Chromatin Mapping: A cut above

A new technique called CUT&RUN can map the distribution of proteins on the genome with higher resolution and accuracy than existing approaches.
  1. Chongsheng He
  2. Roberto Bonasio  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States

The genome is regulated by thousands of proteins and mapping the interactions between these proteins and the genome is crucial in many areas of biology. However, the mapping process is complicated by the fact that eukaryotic genomes are normally packaged inside a macromolecular complex called chromatin, which is found in the cell nucleus. The basic building block of chromatin is a structure called a nucleosome, which consists of about 150 base pairs of DNA wrapped around proteins called histones (Campos and Reinberg, 2009). The most popular technique for mapping protein–DNA interactions is called ChIP, which is short for chromatin immunoprecipitation.

Although a number of variations on ChIP have been developed over the years (Zentner and Henikoff, 2014), the original method – called crosslinked ChIP or X-ChIP – is still the most widely used. In X-ChIP the protein-DNA interactions are frozen in place (by using formaldehyde to form crosslinks between them; Figure 1A) and the chromatin is fragmented by sonication and made soluble. Antibodies are then used to physically separate the chromatin fragments that contain the protein of interest from those that do not, so that the DNA in these fragments can be identified. In native ChIP, the freezing-in-place (crosslinking) step is skipped and the chromatin is fragmented by an enzyme called micrococcal nuclease (MNase; Figure 1B). The DNA obtained by X-ChIP or native ChIP can be identified using microarrays (ChIP-chip) or deep sequencing techniques (ChIP-seq; Johnson et al., 2007). The final results are maps spanning the entire genome and studded with peaks and valleys that represent the presence and absence of a given protein at each genomic locus.

X-ChIP, native ChIP, and CUT&RUN.

(A) In X-ChIP, cells are first crosslinked (red crosses) with formaldehyde to freeze the interactions between the DNA (black line) and a chromatin-binding protein of interest (CP; blue). Sonication fragments the chromatin and makes it soluble. Antibodies are used to recognize the protein–DNA fragments, which are then ‘pulled’ out of the solution using antibody-binding beads, in a process called immunoprecipitation. The histones are shown in yellow. (B) In native ChIP, chromatin is fragmented and solubilized by treating cells with an enzyme called micrococcal nuclease (MNase; small brown shapes). The natural affinity of the protein for its DNA target keep them together during the immunoprecipitation process. (C) In CUT&RUN, antibodies direct the activity of the MNase enzyme to ensure that chromatin cleavage happens close to the protein of interest. A protein called protein A (brown ovals) binds the MNase enzyme to the antibody. The resulting small DNA fragments can be isolated as they diffuse out of the nuclei.

Crosslinking-based ChIP techniques, especially ChIP-seq, are now widely used to study gene regulation and they have been employed in a number of large-scale studies, such as the ENCODE project (ENCODE Consortium, 2012) and the NIH Roadmap Epigenomics project (Roadmap Epigenomics Consortium, 2015). Thousands of ChIP-seq datasets are available in public databases and there are very few papers in the fields of transcription, gene regulation, and epigenetics that do not contain at least one ChIP-seq experiment.

However, ChIP-seq suffers from a number of limitations, including poor resolution, suboptimal signal-to-noise ratio, and a tendency for false positives. These problems are caused by the chemicals used to crosslink the chromatin, the strong forces used to fragment it during sonication, and the detergents used to make the fragments soluble (Jain et al., 2015; Teytelman et al., 2013). Now, in eLife, Peter Skene and Steven Henikoff of the Fred Hutchinson Cancer Research Center report that they have developed a new technique called ‘cleavage under targets and release using nuclease’ (CUT&RUN) that has the potential to overcome the limitations of X-ChIP (Skene and Henikoff, 2017).

CUT&RUN is similar to native ChIP in that it uses the same enzyme, MNase, to fragment the DNA (Figure 1C). However, unlike native ChIP, the antibodies are not used to physically separate wanted from unwanted chromatin fragments (which is one of the sources of noise in ChIP); instead, CUT&RUN uses the antibodies to guide the cutting activity of the MNase enzyme to the protein of interest while the latter is still bound to intact chromatin. This means that only nearby DNA is cut into small fragments; because of their size, these fragments of DNA float out of the nuclei (leaving the rest of the uncut genome behind) and can be identified by deep sequencing. Therefore, a significant advantage of CUT&RUN is that it does not require the use of strong chemicals or sonication and that the nuclease only cuts the DNA in the region of interest, thus minimizing the noise from unwanted chromatin regions. Skene and Henikoff borrowed this idea from an older technique called chromatin immunocleavage (ChIC; Schmid et al., 2004) but adapted it to native nuclei and modernized it for the sequencing age.

To test the performance of CUT&RUN, Skene and Henikoff created maps of well-known proteins that bind the genome in yeast and human cells and compared these to maps produced by ChIP-seq. The maps obtained through CUT&RUN had a higher dynamic range and recovered a larger fraction of ‘true positives’ (sites containing short DNA sequences recognized by each protein). Skene and Henikoff were also able to modify CUT&RUN to study poorly soluble complexes by extracting all the DNA from the nuclei and only sequencing fragments below a certain size limit, which were specifically generated by the antibody-guided MNase enzyme. Due to lower sample and sequencing requirements, CUT&RUN might be applicable to a number of real-world situations, where cost and sample availability are often an issue.

As a new technique, CUT&RUN will require further evaluation to determine whether it could replace (or at least complement) ChIP-seq and its variants at the same scale. For example, it is not clear if CUT&RUN can be applied to samples in which it is not possible to isolate the nuclei of the cells; this could include some fresh tissue samples and many samples that have been fixed and then frozen. Moreover, like X-ChIP, CUT&RUN has the disadvantage that in addition to cleaving DNA in the target region, the nuclease also cleaves DNA that is far away from the target region in sequence space, but close in real space because of the three-dimensional structure of the DNA. To distinguish between these direct and indirect targets, Skene and Henikoff compared CUT&RUN maps with those obtained with their native ChIP protocol (Kasinathan et al., 2014), which only detects direct targets. However, this two-pronged approach can be labor intensive and CUT&RUN would be even more useful if it could be modified to only detect DNA directly bound to the protein of interest.

Nevertheless, CUT&RUN is a welcome addition to the arsenal of techniques in the fast-evolving field of functional genomics and we look forward to the new insights that it might facilitate in the future.

References

Article and author information

Author details

  1. Chongsheng He

    Epigenetics Institute and the Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Roberto Bonasio

    Epigenetics Institute and the Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    rbon@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0767-0889

Publication history

  1. Version of Record published:

Copyright

© 2017, He et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,824
    views
  • 500
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chongsheng He
  2. Roberto Bonasio
(2017)
Chromatin Mapping: A cut above
eLife 6:e25000.
https://doi.org/10.7554/eLife.25000

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.