A tunable refractive index matching medium for live imaging cells, tissues and model organisms

  1. Tobias Boothe
  2. Lennart Hilbert
  3. Michael Heide
  4. Lea Berninger
  5. Wieland B Huttner
  6. Vasily Zaburdaev
  7. Nadine L Vastenhouw
  8. Eugene W Myers
  9. David N Drechsel
  10. Jochen C Rink  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Research Institute of Molecular Pathology, Germany

Abstract

In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus a substantial improvement of the live-imaging of primary cell cultures, planarians, zebrafish and human cerebral organoids.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Tobias Boothe

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lennart Hilbert

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Heide

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lea Berninger

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201
  6. Vasily Zaburdaev

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Nadine L Vastenhouw

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8782-9775
  8. Eugene W Myers

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. David N Drechsel

    Research Institute of Molecular Pathology, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Jochen C Rink

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    rink@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6381-6742

Funding

Max-Planck-Gesellschaft (Individual research support programs)

  • Tobias Boothe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Clare M Waterman, National Institutes of Health, United States

Publication history

  1. Received: March 28, 2017
  2. Accepted: July 13, 2017
  3. Accepted Manuscript published: July 14, 2017 (version 1)
  4. Version of Record published: September 4, 2017 (version 2)
  5. Version of Record updated: September 14, 2017 (version 3)

Copyright

© 2017, Boothe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,655
    Page views
  • 2,666
    Downloads
  • 76
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Boothe
  2. Lennart Hilbert
  3. Michael Heide
  4. Lea Berninger
  5. Wieland B Huttner
  6. Vasily Zaburdaev
  7. Nadine L Vastenhouw
  8. Eugene W Myers
  9. David N Drechsel
  10. Jochen C Rink
(2017)
A tunable refractive index matching medium for live imaging cells, tissues and model organisms
eLife 6:e27240.
https://doi.org/10.7554/eLife.27240

Further reading

    1. Cell Biology
    Hiroaki Eshima, Justin L Shahtout ... Katsuhiko Funai
    Research Article

    Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacologic neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacologic suppression.

    1. Cell Biology
    2. Neuroscience
    Holly H Black, Jessica L Hanson ... Alexandra Whiteley
    Research Article

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10' (PEG10) in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.