Microscopy: Live imaging looks deeper
Microscopes rely on lenses bending, or refracting, light in predictable ways to allow us to look at objects that are otherwise too small to see. Yet, for as long as scientists have used lenses to magnify and observe life, problems have occurred when light does not refract as predicted. Any departure from the norm is called an aberration, and modern imaging systems have complex arrays of lenses with specialized coatings to limit most optical aberrations. However, these highly engineered systems are designed to optimally focus on objects at a fixed distance, typically the surface of the coverslip placed over the sample on a microscopy slide (Cargille, 1985). Focusing any deeper into samples within a watery solution – like a living cell or tissue – raises problems once again because of a phenomenon known as spherical aberration.
Light travels faster through water than it travels through glass or most biological samples. The speed of light in a given material is described by a property called its refractive index; and the higher the refractive index the slower light will travel. Spherical aberration occurs when light from an object – such as a fluorescently tagged protein – crosses the boundary between two materials with different refractive indices – for example, the biological sample and the surrounding solution – at an angle, and then bends because it changes speed. As the sample moves deeper into an aqueous solution, the point where the light intersects with the coverslip moves as well, and further bending by refraction can prevent the light from being captured by the lens (Figure 1). This effectively decreases both the resolution and brightness of the image, making it too blurry and too dim to distinguish meaningful features of objects further into the sample.
Biologists looking at living samples and wanting to see deeper than about 10 micrometers from the surface have previously needed microscopes with lower resolution, corrective adjustments, or 'adaptive optics systems' to minimize the effects of spherical aberration (Booth, 2007). These technologies, however, have limited practicality and are often expensive. Now, in eLife, Jochen Rink of the Max Planck Institute of Molecular Cell Biology and Genetics and colleagues report a simpler and more affordable approach (Boothe et al., 2017).
For non-living – or fixed – specimens, the problem of spherical aberrations has long been overcome by replacing the water with an optically clear substance with a high refractive index to better match that of glass. Yet many of the substances currently used, such as glycerol, are toxic to living samples. Rink and colleagues – including Tobias Boothe as first author – instead looked for a water-soluble compound with a high refractive index that was not toxic. A compound called iodixanol met all their requirements and they showed that when added to the surrounding solution at the proper concentration the biological sample effectively became 'invisible'. This occurred because light from the object did not experience a change in refractive index when it traveled between the sample and the solution, which meant that fluorescent objects within could be seen more clearly. No change in refractive index meant that the light was no longer refracted when it exited the sample. In other words, spherical aberration was greatly reduced.
Boothe et al. demonstrate the benefits of decreasing the spherical aberration in live samples by imaging deep into developing zebrafish embryos and planarian flatworms. Fluorescent markers in animals mounted in a solution containing iodixanol looked sharper and brighter than those in a more traditional aqueous solution. As would be expected, the improvements in optical resolution and brightness were more pronounced for objects at greater depths away from the coverslip.
Boothe et al. confirm that iodixanol is compatible with living samples by showing that various zebrafish embryos, human cell cultures and planarian flatworms can develop, proliferate, and even regenerate in the presence of high concentrations of the substance. This method represents a breakthrough for scientists looking to obtain high-quality images from living organisms. Microscopists will, however, still face challenges in matching the refractive index of the surrounding solution to the sample, because most organisms consist of multiple materials of different refractive indices. As such, the technique presented by Boothe et al. is a step forward for the field, but opportunities remain to further improve image quality in complex organisms.
References
-
Adaptive optics in microscopyPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365:2829–2843.https://doi.org/10.1098/rsta.2007.0013
-
New York Microscopical Society YearbookImmersion oil and the microscope, New York Microscopical Society Yearbook, Cargille-Sacher Laboratories, Inc.
Article and author information
Author details
Publication history
Copyright
© 2017, Fadero et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,418
- views
-
- 289
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington’s disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration–associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.
-
- Cell Biology
Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient. By tracking live cell trajectory and analyzing the directionality of T cells and neutrophils, we observe that amoeboid cells can durotax. We further delineate the underlying mechanism to involve non-muscle myosin IIA (NMIIA) polarization towards the soft-matrix-side but may not require differential actin flow up- or down-stiffness gradient. Using the protista Dictyostelium, we demonstrate the evolutionary conservation of amoeboid durotaxis. Finally, these experimental phenomena are theoretically captured by an active gel model capable of mechanosensing. Collectively, these results may shed new lights on immune surveillance and recently identified confined migration of cancer cells, within the mechanically inhomogeneous tumor microenvironment or the inflamed fibrotic tissues.