Cell type boundaries organize plant development

  1. Monica Pia Caggiano
  2. Xiulian Yu
  3. Neha Bhatia
  4. André Larsson
  5. Hasthi Ram
  6. Carolyn K Ohno
  7. Pia Sappl
  8. Elliot M Meyerowitz
  9. Henrik Jönsson
  10. Marcus G Heisler  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany
  2. Lund University, Sweden
  3. California Institute of Technology, United States

Abstract

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.

Article and author information

Author details

  1. Monica Pia Caggiano

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiulian Yu

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Neha Bhatia

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. André Larsson

    Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Hasthi Ram

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Carolyn K Ohno

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Pia Sappl

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Elliot M Meyerowitz

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4798-5153
  9. Henrik Jönsson

    Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2340-588X
  10. Marcus G Heisler

    European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    marcus.heisler@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5644-8398

Funding

H2020 European Research Council (261081)

  • Marcus G Heisler

Marie Curie Actions (255089)

  • Pia Sappl

Gordon and Betty Moore Foundation (GBMF3406)

  • Elliot M Meyerowitz

Gatsby Charitable Foundation (GAT3395/PR4)

  • Henrik Jönsson

Swedish Research Council (VR2013-4632)

  • Henrik Jönsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Version history

  1. Received: April 3, 2017
  2. Accepted: September 11, 2017
  3. Accepted Manuscript published: September 12, 2017 (version 1)
  4. Accepted Manuscript updated: September 25, 2017 (version 2)
  5. Version of Record published: September 27, 2017 (version 3)

Copyright

© 2017, Caggiano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,535
    Page views
  • 1,089
    Downloads
  • 90
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monica Pia Caggiano
  2. Xiulian Yu
  3. Neha Bhatia
  4. André Larsson
  5. Hasthi Ram
  6. Carolyn K Ohno
  7. Pia Sappl
  8. Elliot M Meyerowitz
  9. Henrik Jönsson
  10. Marcus G Heisler
(2017)
Cell type boundaries organize plant development
eLife 6:e27421.
https://doi.org/10.7554/eLife.27421

Share this article

https://doi.org/10.7554/eLife.27421

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Zian Liao, Suni Tang ... Martin Matzuk
    Research Article

    Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.