Computational design of environmental sensors for the potent opioid fentanyl

  1. Matthew J Bick
  2. Per J Greisen
  3. Kevin J Morey
  4. Mauricio S Antunes
  5. David La
  6. Banumathi Sankaran
  7. Luc Reymond
  8. Kai Johnsson
  9. June I Medford
  10. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Colorado State University, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Institute of Chemical Sciences and Engineering (ISIC), Switzerland

Abstract

We describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment.

Article and author information

Author details

  1. Matthew J Bick

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Per J Greisen

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin J Morey

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mauricio S Antunes

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David La

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Banumathi Sankaran

    Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luc Reymond

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai Johnsson

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. June I Medford

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7896-6217

Funding

National Cancer Institute (F32CA171572)

  • Matthew J Bick

Howard Hughes Medical Institute

  • Matthew J Bick
  • Per J Greisen
  • David La
  • David Baker

Defense Threat Reduction Agency (HDTRA1-13-1-0054)

  • Matthew J Bick
  • Per J Greisen
  • Kevin J Morey
  • Mauricio S Antunes
  • June I Medford
  • David Baker

European Molecular Biology Organization (EMBO ALTF 1605-2011)

  • Per J Greisen

Carlsbergfondet

  • Per J Greisen

National Institutes of Health

  • Banumathi Sankaran

National Institute of General Medical Sciences

  • Banumathi Sankaran

U.S. Department of Energy (DE-AC02-05CH11231)

  • Banumathi Sankaran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Bick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,221
    views
  • 1,141
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Bick
  2. Per J Greisen
  3. Kevin J Morey
  4. Mauricio S Antunes
  5. David La
  6. Banumathi Sankaran
  7. Luc Reymond
  8. Kai Johnsson
  9. June I Medford
  10. David Baker
(2017)
Computational design of environmental sensors for the potent opioid fentanyl
eLife 6:e28909.
https://doi.org/10.7554/eLife.28909

Share this article

https://doi.org/10.7554/eLife.28909

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.