Computational design of environmental sensors for the potent opioid fentanyl

  1. Matthew J Bick
  2. Per J Greisen
  3. Kevin J Morey
  4. Mauricio S Antunes
  5. David La
  6. Banumathi Sankaran
  7. Luc Reymond
  8. Kai Johnsson
  9. June I Medford
  10. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Colorado State University, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Institute of Chemical Sciences and Engineering (ISIC), Switzerland

Abstract

We describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment.

Article and author information

Author details

  1. Matthew J Bick

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Per J Greisen

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin J Morey

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mauricio S Antunes

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David La

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Banumathi Sankaran

    Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luc Reymond

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai Johnsson

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. June I Medford

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7896-6217

Funding

National Cancer Institute (F32CA171572)

  • Matthew J Bick

Howard Hughes Medical Institute

  • Matthew J Bick
  • Per J Greisen
  • David La
  • David Baker

Defense Threat Reduction Agency (HDTRA1-13-1-0054)

  • Matthew J Bick
  • Per J Greisen
  • Kevin J Morey
  • Mauricio S Antunes
  • June I Medford
  • David Baker

European Molecular Biology Organization (EMBO ALTF 1605-2011)

  • Per J Greisen

Carlsbergfondet

  • Per J Greisen

National Institutes of Health

  • Banumathi Sankaran

National Institute of General Medical Sciences

  • Banumathi Sankaran

U.S. Department of Energy (DE-AC02-05CH11231)

  • Banumathi Sankaran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Benjamin F Cravatt, The Scripps Research Institute, United States

Version history

  1. Received: May 23, 2017
  2. Accepted: September 18, 2017
  3. Accepted Manuscript published: September 19, 2017 (version 1)
  4. Version of Record published: October 24, 2017 (version 2)

Copyright

© 2017, Bick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,792
    views
  • 1,088
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Bick
  2. Per J Greisen
  3. Kevin J Morey
  4. Mauricio S Antunes
  5. David La
  6. Banumathi Sankaran
  7. Luc Reymond
  8. Kai Johnsson
  9. June I Medford
  10. David Baker
(2017)
Computational design of environmental sensors for the potent opioid fentanyl
eLife 6:e28909.
https://doi.org/10.7554/eLife.28909

Share this article

https://doi.org/10.7554/eLife.28909

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.