Tissue Regeneration: Regional differences

The skin is a complex landscape containing regions in which hair follicles exhibit different types of behavior.
  1. Zhou Yu
  2. Ting Chen  Is a corresponding author
  1. Tsinghua University, China
  2. National Institute of Biological Sciences, China

The regeneration of tissue is a tightly controlled process which ensures that adult stem cells generate an appropriate number of daughter cells in order to maintain healthy tissue in the face of daily wear and tear. Tissue regeneration lasts throughout an animal’s lifetime, but when it goes wrong the end results can include chronic wounds, premature aging and cancer (Fuchs and Chen, 2013). Skin tissue has a fast turnover rate, and many of the fundamental principles that govern tissue regeneration have been discovered in experiments on hair follicle stem cells in mice (Fuchs, 2016).

A hair follicle cycles through three phases: growth, regression and resting. Growth is powered by stem cells being activated to proliferate and generate daughter cells, and the extent to which this happens depends on the relative levels of activating signals (such as WNT) and inhibitory signals (such as BMP; Plikus and Chuong, 2014). However, we know relatively little about the mechanisms that control the levels of these signaling molecules in the first place. Now, in eLife, Qing Nie and Maksim Plikus of the University of California, Irvine and colleagues – including Qixuan Wang and Ji Won Oh as joint first authors – report new insights into these mechanisms based on a combination of simulations and experiments (Wang et al., 2017).

Wang et al. – who are based at Irvine and various institutes in the United States, Korea, China, Australia and Poland – started by using simulations of a simple model to show that certain features of the hair cycle in mice were not observed in the model if it was assumed that all the hair follicles were identical. This indicated that the hair follicles in the different regions of the skin expressed different levels of signal molecules, and that the diffusion of, say, WNT from regions with high levels of WNT influenced the behavior of neighboring regions that had lower levels of WNT to begin with. When the model was adjusted so that dorsal skin hair follicles went through the cycles slower than ventral skin hair follicles, the simulations produced hair cycle patterns similar to those seen in real mice, including waves of hair cycles spreading from ventral skin to dorsal skin.

To test whether or not there exist multiple regions of skin with distinct hair cycles, Wang et al. used a reporter line to detect the level of WNT activity in the skin of live mice in real time. This revealed that hair follicles in ventral chin skin have a shorter growth phase and a faster turnover rate than hair follicles in dorsal skin. To understand the molecular mechanism behind this difference, the researchers discovered that dorsal skin in its resting phase has enriched BMP ligands, depleted BMP antagonists and decreased WNT ligands compared to ventral chin skin. Experiments on transgenic mice confirmed that hair cycles were changed in regions in which BMP or WNT signaling had been perturbed: moreover, perturbing these signals also altered the waves of hair cycles that spread from ventral skin to dorsal skin.

The simulations also predicted that hair follicles would be in an extended resting phase when inhibitor levels are extremely high. Wang et al. observed such behavior in ear skin: the hair follicles in ear skin exist in a dormant resting phase for an extended period of time, with limited or no response to methods that would normally lead to hair growth. The researchers then discovered that the cartilage/muscle complex that is only found in the ear expresses high levels of BMP ligands and multiple WNT antagonists, and went on to show that dampening the BMP signal or increasing the WNT signal can partially activate the growth of hair follicles in the ear.

These experiments confirm that the BMP and WNT pathways control the regional pattern of hair regeneration that is observed, and that these pathways also mediate the interaction among these different regions. This is consistent with the well-known role of BMP/WNT signaling in the skin (Kandyba et al., 2013), but we do not know what gives rise to the intrinsically different levels of BMP and WNT found in the various regions.

Why is it important to understand regional tissue regeneration? Conventional studies often focus on a single hair follicle or a population of hair follicles within one region. These reductionist approaches were able to reveal some of the core principles governing tissue regeneration, but they also missed out on a whole dimension of regulation. Most tissues are composed of heterogeneous cell populations (Donati and Watt, 2015): different regions of skin, for example, differ in hair follicle length, epidermis thickness and pigmentation patterns, all of which serve unique functions (Chang, 2009; Chuong et al., 2013).

Likewise, such regional behavior is evident in many human diseases: for instance, non-segmental vitiligo involves the loss of skin melanocytes from patches of skin on both the left and right sides of the body (Taïeb and Picardo, 2009). These region-specific features suggest that tissue regeneration is regulated by some sort of 'molecular area code'. The next challenge is to work out how this area code works.

References

Article and author information

Author details

  1. Zhou Yu

    Zhou Yu is in the Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China and the National Institute of Biological Sciences, Beijing, China

    Competing interests
    No competing interests declared
  2. Ting Chen

    Ting Chen is at the National Institute of Biological Sciences, Beijing, China

    For correspondence
    chenting@nibs.ac.cn
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7404-4538

Publication history

  1. Version of Record published: August 9, 2017 (version 1)

Copyright

© 2017, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,187
    views
  • 147
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhou Yu
  2. Ting Chen
(2017)
Tissue Regeneration: Regional differences
eLife 6:e30249.
https://doi.org/10.7554/eLife.30249

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.