Tissue Regeneration: Regional differences

The skin is a complex landscape containing regions in which hair follicles exhibit different types of behavior.
  1. Zhou Yu
  2. Ting Chen  Is a corresponding author
  1. Tsinghua University, China
  2. National Institute of Biological Sciences, China

The regeneration of tissue is a tightly controlled process which ensures that adult stem cells generate an appropriate number of daughter cells in order to maintain healthy tissue in the face of daily wear and tear. Tissue regeneration lasts throughout an animal’s lifetime, but when it goes wrong the end results can include chronic wounds, premature aging and cancer (Fuchs and Chen, 2013). Skin tissue has a fast turnover rate, and many of the fundamental principles that govern tissue regeneration have been discovered in experiments on hair follicle stem cells in mice (Fuchs, 2016).

A hair follicle cycles through three phases: growth, regression and resting. Growth is powered by stem cells being activated to proliferate and generate daughter cells, and the extent to which this happens depends on the relative levels of activating signals (such as WNT) and inhibitory signals (such as BMP; Plikus and Chuong, 2014). However, we know relatively little about the mechanisms that control the levels of these signaling molecules in the first place. Now, in eLife, Qing Nie and Maksim Plikus of the University of California, Irvine and colleagues – including Qixuan Wang and Ji Won Oh as joint first authors – report new insights into these mechanisms based on a combination of simulations and experiments (Wang et al., 2017).

Wang et al. – who are based at Irvine and various institutes in the United States, Korea, China, Australia and Poland – started by using simulations of a simple model to show that certain features of the hair cycle in mice were not observed in the model if it was assumed that all the hair follicles were identical. This indicated that the hair follicles in the different regions of the skin expressed different levels of signal molecules, and that the diffusion of, say, WNT from regions with high levels of WNT influenced the behavior of neighboring regions that had lower levels of WNT to begin with. When the model was adjusted so that dorsal skin hair follicles went through the cycles slower than ventral skin hair follicles, the simulations produced hair cycle patterns similar to those seen in real mice, including waves of hair cycles spreading from ventral skin to dorsal skin.

To test whether or not there exist multiple regions of skin with distinct hair cycles, Wang et al. used a reporter line to detect the level of WNT activity in the skin of live mice in real time. This revealed that hair follicles in ventral chin skin have a shorter growth phase and a faster turnover rate than hair follicles in dorsal skin. To understand the molecular mechanism behind this difference, the researchers discovered that dorsal skin in its resting phase has enriched BMP ligands, depleted BMP antagonists and decreased WNT ligands compared to ventral chin skin. Experiments on transgenic mice confirmed that hair cycles were changed in regions in which BMP or WNT signaling had been perturbed: moreover, perturbing these signals also altered the waves of hair cycles that spread from ventral skin to dorsal skin.

The simulations also predicted that hair follicles would be in an extended resting phase when inhibitor levels are extremely high. Wang et al. observed such behavior in ear skin: the hair follicles in ear skin exist in a dormant resting phase for an extended period of time, with limited or no response to methods that would normally lead to hair growth. The researchers then discovered that the cartilage/muscle complex that is only found in the ear expresses high levels of BMP ligands and multiple WNT antagonists, and went on to show that dampening the BMP signal or increasing the WNT signal can partially activate the growth of hair follicles in the ear.

These experiments confirm that the BMP and WNT pathways control the regional pattern of hair regeneration that is observed, and that these pathways also mediate the interaction among these different regions. This is consistent with the well-known role of BMP/WNT signaling in the skin (Kandyba et al., 2013), but we do not know what gives rise to the intrinsically different levels of BMP and WNT found in the various regions.

Why is it important to understand regional tissue regeneration? Conventional studies often focus on a single hair follicle or a population of hair follicles within one region. These reductionist approaches were able to reveal some of the core principles governing tissue regeneration, but they also missed out on a whole dimension of regulation. Most tissues are composed of heterogeneous cell populations (Donati and Watt, 2015): different regions of skin, for example, differ in hair follicle length, epidermis thickness and pigmentation patterns, all of which serve unique functions (Chang, 2009; Chuong et al., 2013).

Likewise, such regional behavior is evident in many human diseases: for instance, non-segmental vitiligo involves the loss of skin melanocytes from patches of skin on both the left and right sides of the body (Taïeb and Picardo, 2009). These region-specific features suggest that tissue regeneration is regulated by some sort of 'molecular area code'. The next challenge is to work out how this area code works.

References

Article and author information

Author details

  1. Zhou Yu

    Zhou Yu is in the Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China and the National Institute of Biological Sciences, Beijing, China

    Competing interests
    No competing interests declared
  2. Ting Chen

    Ting Chen is at the National Institute of Biological Sciences, Beijing, China

    For correspondence
    chenting@nibs.ac.cn
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7404-4538

Publication history

  1. Version of Record published:

Copyright

© 2017, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,237
    views
  • 154
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhou Yu
  2. Ting Chen
(2017)
Tissue Regeneration: Regional differences
eLife 6:e30249.
https://doi.org/10.7554/eLife.30249

Further reading

    1. Computational and Systems Biology
    Yang Tan, Bingxin Zhou ... Liang Hong
    Research Article

    Protein engineering is a pivotal aspect of synthetic biology, involving the modification of amino acids within existing protein sequences to achieve novel or enhanced functionalities and physical properties. Accurate prediction of protein variant effects requires a thorough understanding of protein sequence, structure, and function. Deep learning methods have demonstrated remarkable performance in guiding protein modification for improved functionality. However, existing approaches predominantly rely on protein sequences, which face challenges in efficiently encoding the geometric aspects of amino acids’ local environment and often fall short in capturing crucial details related to protein folding stability, internal molecular interactions, and bio-functions. Furthermore, there lacks a fundamental evaluation for developed methods in predicting protein thermostability, although it is a key physical property that is frequently investigated in practice. To address these challenges, this article introduces a novel pre-training framework that integrates sequential and geometric encoders for protein primary and tertiary structures. This framework guides mutation directions toward desired traits by simulating natural selection on wild-type proteins and evaluates variant effects based on their fitness to perform specific functions. We assess the proposed approach using three benchmarks comprising over 300 deep mutational scanning assays. The prediction results showcase exceptional performance across extensive experiments compared to other zero-shot learning methods, all while maintaining a minimal cost in terms of trainable parameters. This study not only proposes an effective framework for more accurate and comprehensive predictions to facilitate efficient protein engineering, but also enhances the in silico assessment system for future deep learning models to better align with empirical requirements. The PyTorch implementation is available at https://github.com/ai4protein/ProtSSN.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.