1. Computational and Systems Biology
  2. Developmental Biology and Stem Cells
Download icon

A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning

  1. Qixuan Wang
  2. Ji Won Oh
  3. Hye-Lim Lee
  4. Anukriti Dhar
  5. Tao Peng
  6. Raul Ramos
  7. Christian Fernando Guerrero-Juarez
  8. Xiaojie Wang
  9. Ran Zhao
  10. Xiaoling Cao
  11. Jonathan Le
  12. Melisa A Fuentes
  13. Shelby C Jocoy
  14. Antoni R Rossi
  15. Brian Vu
  16. Kim Pham
  17. Xiaoyang Wang
  18. Nanda Maya Mali
  19. Jung Min Park
  20. June-Hyug Choi
  21. Hyunsu Lee
  22. Julien Legrand
  23. Eve Kandyba
  24. Jung Chul Kim
  25. Moonkyu Kim
  26. John Foley
  27. Zhengquan Yu
  28. Krzysztof Kobielak
  29. Bogi Andersen
  30. Kiarash Khosrotehrani
  31. Qing Nie Is a corresponding author
  32. Maksim V Plikus Is a corresponding author
  1. University of California, Irvine, United States
  2. School of Medicine, Kyungpook National University, Republic of Korea
  3. School of Medicine, Kyungpook National University, Korea (South), Republic of
  4. University of Queensland Diamantina Institute, Australia
  5. University of Southern California, United States
  6. Kyungpook National University Hospital, Republic of Korea
  7. Indiana University School of Medicine, United States
  8. College of Biological Sciences, China Agricultural University, China
Research Article
Cited
0
Views
1,210
Comments
0
Cite as: eLife 2017;6:e22772 doi: 10.7554/eLife.22772

Abstract

The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.

Article and author information

Author details

  1. Qixuan Wang

    1. Department of Mathematics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ji Won Oh

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0001-5742-5120
  3. Hye-Lim Lee

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anukriti Dhar

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tao Peng

    1. Department of Mathematics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Raul Ramos

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Fernando Guerrero-Juarez

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaojie Wang

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Zhao

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaoling Cao

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jonathan Le

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Melisa A Fuentes

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Shelby C Jocoy

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Antoni R Rossi

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Brian Vu

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kim Pham

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Xiaoyang Wang

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Nanda Maya Mali

    1. Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  19. Jung Min Park

    1. Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  20. June-Hyug Choi

    1. Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  21. Hyunsu Lee

    1. Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  22. Julien Legrand

    1. Experimental Dermatology Group, University of Queensland Diamantina Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Eve Kandyba

    1. Department of Pathology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-9219-5284
  24. Jung Chul Kim

    1. Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  25. Moonkyu Kim

    1. Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  26. John Foley

    1. Department of Dermatology, Medical Sciences Program, Indiana University School of Medicine, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Zhengquan Yu

    1. State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0001-8696-2013
  28. Krzysztof Kobielak

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Bogi Andersen

    1. Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0001-7181-2768
  30. Kiarash Khosrotehrani

    1. Experimental Dermatology Group, University of Queensland Diamantina Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  31. Qing Nie

    1. Department of Mathematics, University of California, Irvine, Irvine, United States
    For correspondence
    1. qnie@math.uci.edu
    Competing interests
    The authors declare that no competing interests exist.
  32. Maksim V Plikus

    1. Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
    For correspondence
    1. plikus@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-8845-2559

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR067273)

  • Maksim V Plikus

National Research Foundation of Korea (2016R1C1B1015211)

  • Ji Won Oh

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR061552)

  • Krzysztof Kobielak

National Health and Medical Research Council (1023371)

  • Kiarash Khosrotehrani

National Science Foundation (DGE-1321846)

  • Christian Fernando Guerrero-Juarez

National Institute of General Medical Sciences (GM055246)

  • Christian Fernando Guerrero-Juarez

Pew Charitable Trusts (29641)

  • Maksim V Plikus

National Science Foundation (DMS 1161621)

  • Qing Nie

National Cancer Institute (T32-CA009054)

  • Hye-Lim Lee

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR056439)

  • Bogi Andersen

National Science Foundation (DMS 1562176)

  • Qing Nie

National Institute of General Medical Sciences (P50-GM076516)

  • Qing Nie

National Institute of General Medical Sciences (R01-GM107264)

  • Qing Nie

National Institute of Neurological Disorders and Stroke (R01-NS095355)

  • Qing Nie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2012-3054 and #2013-3081) of the University of California, Irvine.

Reviewing Editor

  1. Valerie Horsley, Reviewing Editor, Yale University, United States

Publication history

  1. Received: October 28, 2016
  2. Accepted: June 29, 2017
  3. Accepted Manuscript published: July 11, 2017 (version 1)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,210
    Page views
  • 245
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biophysics and Structural Biology
    2. Microbiology and Infectious Disease
    Mauricio Comas-Garcia et al.
    Research Article