Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

  1. Chris B Martin  Is a corresponding author
  2. Danielle Douglas
  3. Rachel N Newsome
  4. Louisa LY Man
  5. Morgan Barense  Is a corresponding author
  1. University of Toronto, Canada
  2. Mount Allison University, Canada
  3. Rotman Research Institute, Canada
  4. Queen's University, Canada

Abstract

A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully-specified object concepts through the integration of their visual and conceptual features.

Article and author information

Author details

  1. Chris B Martin

    Department of Psychology, University of Toronto, Toronto, Canada
    For correspondence
    cmarti97@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7014-4371
  2. Danielle Douglas

    Department of Psychology, Mount Allison University, Sackville, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel N Newsome

    Rotman Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Louisa LY Man

    Department of Psychology, Queen's University, Kingston, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Morgan Barense

    Department of Psychology, University of Toronto, Toronto, Canada
    For correspondence
    barense@psych.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada

  • Morgan Barense

James S. McDonnell Foundation

  • Morgan Barense

Canada Research Chairs

  • Morgan Barense

Ontario Ministry of Economic Development and Innovation

  • Morgan Barense

Natural Sciences and Engineering Research Council of Canada (PDF - 502437 - 2017)

  • Chris B Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Institutional Review Board at the University ofToronto (REB # 23778) and the Research Ethics Board at Baycrest Hospital (REB # 15-06). Informed consent was obtained from each participant before the experiment, including consent to publish anonymized results.

Copyright

© 2018, Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,707
    views
  • 949
    downloads
  • 148
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chris B Martin
  2. Danielle Douglas
  3. Rachel N Newsome
  4. Louisa LY Man
  5. Morgan Barense
(2018)
Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream
eLife 7:e31873.
https://doi.org/10.7554/eLife.31873

Share this article

https://doi.org/10.7554/eLife.31873

Further reading

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.