1. Neuroscience
Download icon

Visual Cognition: In sight, in mind

  1. Mariam Aly  Is a corresponding author
  1. Columbia University, United States
Insight
  • Cited 0
  • Views 1,968
  • Annotations
Cite this article as: eLife 2018;7:e35663 doi: 10.7554/eLife.35663

Abstract

A region of the brain called the perirhinal cortex represents both what things look like and what they mean.

Main text

When we look around at the world, we can appreciate what things look like and also what they are used for. For example, when we look at a couch, we see its long flat surface, its cushions, and its back. We also know that a couch is a good place to sit or nap. How does the brain represent, and integrate, these different kinds of information? This is a tricky question because these details are often related. A futon and a couch have similar functions and they look similar too. Because of this, it can be difficult to tell whether a given brain region codes for an object’s appearance (known as a percept) or its function (a concept).

Now, in eLife, Chris Martin, Morgan Barense and colleagues – who are based at the University of Toronto, Mount Allison University, the Rotman Research Institute, and Queen's University in Kingston – report how they have been able to tease out percepts and concepts in the brain (Martin et al., 2018). Their ingenious approach involved using the names of pairs of objects that look similar but have different functions, and other pairs with similar functions but different looks. For example, a tennis ball and a lemon are both roundish and yellow, but serve different purposes; a tennis ball and a tennis racket, on the other hand, do not look alike but are both involved in playing tennis.

Martin et al. asked over a thousand people to rate how much each pair of named objects looked alike, and another equally large group to describe conceptual features of those objects, for example, their function, or where they are typically found. For each pair of objects, these experiments gave one number that indicated the perceptual similarity of the objects, and a second number that indicated their conceptual similarity. Equipped with this information, Martin et al. could test different hypotheses of how percepts and concepts are represented in the brain.

One possibility was that some brain regions represent visual form (Martin and Chao, 2001) and others represent the function or meaning of objects (Patterson et al., 2007). An additional possibility, not exclusive of the first, was that some brain regions could simultaneously represent both (Barense et al., 2012a2012a; Clarke and Tyler, 2014; Murray and Bussey, 1999).

Functional magnetic resonance imaging (fMRI) examines brain activity on a moment-by-moment basis. Martin et al. used fMRI to observe how activity in different brain regions changed when individuals were shown the names of the objects, and did one of two tasks. In one task, individuals had to make judgments about what the object looked like; in the other task they had to make judgments about its conceptual features (e.g., what it is used for). Martin et al. could then look at the patterns of activity in different brain regions while people performed these two tasks, and relate those activity patterns to the ratings of perceptual and conceptual similarity they had obtained earlier (Kriegeskorte et al., 2008).

Martin et al. hypothesized that a region of the brain called the perirhinal cortex would represent what things looked like and what they meant. Prior studies have separately linked this brain region to both of these functions (e.g., Barense et al., 2012b; Wright et al., 2015), but could not disentangle perceptual and conceptual similarity. Having overcome that challenge with their experimental design, Martin et al. found that activity patterns in the perirhinal cortex did indeed reflect both perceptual and conceptual similarity. This result was obtained whether individuals were judging what objects looked like or what they meant, suggesting that this region of the brain may integrate percepts and concepts relatively automatically. Other regions of the brain represented either what things looked like or what they meant, but it was only the perirhinal cortex where both of these representations were integrated (Figure 1).

How visual and conceptual similarity are represented in different regions of the brain.

Objects that are represented similarly in a given brain region are shown close together, with thick solid lines connecting them. Objects that are somewhat similar are shown at intermediate distance, with thin solid lines connecting them. Objects that are represented distinctly are shown further apart, with thin dashed lines between them. (A) A region of the brain called the lateral occipital cortex, shown in blue, represents objects that look alike – like a lemon and a tennis ball – in similar ways. (B) The temporal pole and parahippocampal cortex, shown in green, represent objects that are conceptually related – like a tennis ball and tennis racket – in similar ways. (C) The perirhinal cortex, shown in red, integrates these different kinds of information such that objects that are conceptually related or that look alike are represented in similar ways.

IMAGE CREDIT: Object images courtesy of Bainbridge and Oliva (2015).

Martin et al. have furthered our understanding of how we can perceive and understand objects, and their findings open some exciting avenues for future research. It remains unclear whether the exact same neurons in the perirhinal cortex represent both percepts and concepts at the same time, or if they are represented by distinct, but intermingled, populations of neurons. fMRI allows researchers to see at a general level which brain regions are active, but it cannot identify exactly which neurons are responding or how. Future studies that record from individual neurons will provide a complementary picture to this latest work.

References

Article and author information

Author details

  1. Mariam Aly

    Mariam Aly is in the Department of Psychology, Columbia University, New York, United States

    For correspondence
    ma3631@columbia.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4033-6134

Publication history

  1. Version of Record published: March 1, 2018 (version 1)

Copyright

© 2018, Aly

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,968
    Page views
  • 143
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Nataliia Kozhemiako et al.
    Research Article

    Motivated by the potential of objective neurophysiological markers to index thalamocortical function in patients with severe psychiatric illnesses, we comprehensively characterized key non-rapid eye movement (NREM) sleep parameters across multiple domains, their interdependencies, and their relationship to waking event-related potentials and symptom severity. In 72 schizophrenia (SCZ) patients and 58 controls, we confirmed a marked reduction in sleep spindle density in SCZ and extended these findings to show that fast and slow spindle properties were largely uncorrelated. We also describe a novel measure of slow oscillation and spindle interaction that was attenuated in SCZ. The main sleep findings were replicated in a demographically distinct sample, and a joint model, based on multiple NREM components, statistically predicted disease status in the replication cohort. Although also altered in patients, auditory event-related potentials elicited during wake were unrelated to NREM metrics. Consistent with a growing literature implicating thalamocortical dysfunction in SCZ, our characterization identifies independent NREM and wake EEG biomarkers that may index distinct aspects of SCZ pathophysiology and point to multiple neural mechanisms underlying disease heterogeneity. This study lays the groundwork for evaluating these neurophysiological markers, individually or in combination, to guide efforts at treatment and prevention as well as identifying individuals most likely to benefit from specific interventions.

    1. Neuroscience
    Amy Richardson et al.
    Research Article Updated

    Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.