Visual Cognition: In sight, in mind

A region of the brain called the perirhinal cortex represents both what things look like and what they mean.
  1. Mariam Aly  Is a corresponding author
  1. Columbia University, United States

When we look around at the world, we can appreciate what things look like and also what they are used for. For example, when we look at a couch, we see its long flat surface, its cushions, and its back. We also know that a couch is a good place to sit or nap. How does the brain represent, and integrate, these different kinds of information? This is a tricky question because these details are often related. A futon and a couch have similar functions and they look similar too. Because of this, it can be difficult to tell whether a given brain region codes for an object’s appearance (known as a percept) or its function (a concept).

Now, in eLife, Chris Martin, Morgan Barense and colleagues – who are based at the University of Toronto, Mount Allison University, the Rotman Research Institute, and Queen's University in Kingston – report how they have been able to tease out percepts and concepts in the brain (Martin et al., 2018). Their ingenious approach involved using the names of pairs of objects that look similar but have different functions, and other pairs with similar functions but different looks. For example, a tennis ball and a lemon are both roundish and yellow, but serve different purposes; a tennis ball and a tennis racket, on the other hand, do not look alike but are both involved in playing tennis.

Martin et al. asked over a thousand people to rate how much each pair of named objects looked alike, and another equally large group to describe conceptual features of those objects, for example, their function, or where they are typically found. For each pair of objects, these experiments gave one number that indicated the perceptual similarity of the objects, and a second number that indicated their conceptual similarity. Equipped with this information, Martin et al. could test different hypotheses of how percepts and concepts are represented in the brain.

One possibility was that some brain regions represent visual form (Martin and Chao, 2001) and others represent the function or meaning of objects (Patterson et al., 2007). An additional possibility, not exclusive of the first, was that some brain regions could simultaneously represent both (Barense et al., 2012a2012a; Clarke and Tyler, 2014; Murray and Bussey, 1999).

Functional magnetic resonance imaging (fMRI) examines brain activity on a moment-by-moment basis. Martin et al. used fMRI to observe how activity in different brain regions changed when individuals were shown the names of the objects, and did one of two tasks. In one task, individuals had to make judgments about what the object looked like; in the other task they had to make judgments about its conceptual features (e.g., what it is used for). Martin et al. could then look at the patterns of activity in different brain regions while people performed these two tasks, and relate those activity patterns to the ratings of perceptual and conceptual similarity they had obtained earlier (Kriegeskorte et al., 2008).

Martin et al. hypothesized that a region of the brain called the perirhinal cortex would represent what things looked like and what they meant. Prior studies have separately linked this brain region to both of these functions (e.g., Barense et al., 2012b; Wright et al., 2015), but could not disentangle perceptual and conceptual similarity. Having overcome that challenge with their experimental design, Martin et al. found that activity patterns in the perirhinal cortex did indeed reflect both perceptual and conceptual similarity. This result was obtained whether individuals were judging what objects looked like or what they meant, suggesting that this region of the brain may integrate percepts and concepts relatively automatically. Other regions of the brain represented either what things looked like or what they meant, but it was only the perirhinal cortex where both of these representations were integrated (Figure 1).

How visual and conceptual similarity are represented in different regions of the brain.

Objects that are represented similarly in a given brain region are shown close together, with thick solid lines connecting them. Objects that are somewhat similar are shown at intermediate distance, with thin solid lines connecting them. Objects that are represented distinctly are shown further apart, with thin dashed lines between them. (A) A region of the brain called the lateral occipital cortex, shown in blue, represents objects that look alike – like a lemon and a tennis ball – in similar ways. (B) The temporal pole and parahippocampal cortex, shown in green, represent objects that are conceptually related – like a tennis ball and tennis racket – in similar ways. (C) The perirhinal cortex, shown in red, integrates these different kinds of information such that objects that are conceptually related or that look alike are represented in similar ways.

IMAGE CREDIT: Object images courtesy of Bainbridge and Oliva (2015).

Martin et al. have furthered our understanding of how we can perceive and understand objects, and their findings open some exciting avenues for future research. It remains unclear whether the exact same neurons in the perirhinal cortex represent both percepts and concepts at the same time, or if they are represented by distinct, but intermingled, populations of neurons. fMRI allows researchers to see at a general level which brain regions are active, but it cannot identify exactly which neurons are responding or how. Future studies that record from individual neurons will provide a complementary picture to this latest work.

References

Article and author information

Author details

  1. Mariam Aly

    Mariam Aly is in the Department of Psychology, Columbia University, New York, United States

    For correspondence
    ma3631@columbia.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4033-6134

Publication history

  1. Version of Record published: March 1, 2018 (version 1)

Copyright

© 2018, Aly

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,163
    views
  • 154
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mariam Aly
(2018)
Visual Cognition: In sight, in mind
eLife 7:e35663.
https://doi.org/10.7554/eLife.35663

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.