Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni

  1. George R Wendt
  2. Julie NR Collins
  3. Jimin Pei
  4. Mark S Pearson
  5. Hayley M Bennett
  6. Alex Loukas
  7. Matthew Berriman
  8. Nick V Grishin
  9. James J Collins  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. James Cook University, Australia
  3. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Schistosomes infect more than 200 million people. These parasitic flatworms rely on a syncytial outer-coat called the tegument to survive within the vasculature of their host. Although the tegument is pivotal for their survival, little is known about maintenance of this tissue during the decades schistosomes survive in the bloodstream. Here, we demonstrate that the tegument relies on stem cells (neoblasts) to specify fusogenic progenitors that replace tegumental cells lost to turnover. Molecular characterization of neoblasts and tegumental progenitors led to the discovery of two flatworm-specific zinc finger proteins that are essential for tegumental cell specification. These proteins are homologous to a protein essential for neoblast-driven epidermal maintenance in free-living flatworms. Therefore, we speculate that related parasites (i.e., tapeworms and flukes) employ similar strategies to control tegumental maintenance. Since parasitic flatworms infect every vertebrate species, understanding neoblast-driven tegumental maintenance could identify broad-spectrum therapeutics to fight diseases caused by these parasites.

Data availability

The following data sets were generated
    1. Wellcome Trust Sanger Institute
    (2017) Characterising_Schistosoma_mansoni_stem_cell_populations
    ERS1987962, ERS1987961, ERS1987958, ERS1987958, ERS1987957, ERS1987948, ERS1987946, ERS1987945, ERS1987942.

Article and author information

Author details

  1. George R Wendt

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julie NR Collins

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jimin Pei

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark S Pearson

    Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0002-1544
  5. Hayley M Bennett

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Loukas

    Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew Berriman

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-0377
  8. Nick V Grishin

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James J Collins

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    JamesJ.Collins@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5237-1004

Funding

National Institutes of Health (R01AI121037)

  • James J Collins

Wellcome (107475/Z/15/Z)

  • Matthew Berriman
  • James J Collins

National Institutes of Health (R01GM094575)

  • Nick V Grishin

Welch Foundation (I1505)

  • Nick V Grishin

National Health and Medical Research Council

  • Alex Loukas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and Use of Laboratory Animals, all experiments with and care of vertebrate animals were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the UT Southwestern Medical Center (protocol approval number APN 2014-0072).

Copyright

© 2018, Wendt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,074
    views
  • 432
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. George R Wendt
  2. Julie NR Collins
  3. Jimin Pei
  4. Mark S Pearson
  5. Hayley M Bennett
  6. Alex Loukas
  7. Matthew Berriman
  8. Nick V Grishin
  9. James J Collins
(2018)
Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni
eLife 7:e33221.
https://doi.org/10.7554/eLife.33221

Share this article

https://doi.org/10.7554/eLife.33221

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article Updated

    The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Guillermo Luxán
    Insight

    What determines whether an endothelial cell becomes part of an artery, a vein or a capillary?