Plant Pathology: Plasmid-powered evolutionary transitions
Many bacteria are closely associated with eukaryotic hosts. This relationship can be mutually beneficial, commensal (that is, it benefits one party without affecting the other), or pathogenic. Moreover, and perhaps surprisingly, there are many examples of pathogenic bacteria that are close relatives of mutualistic or commensal bacteria (Wood et al., 2001). For example, while most strains of E. coli are commensal, pathogenic strains – such as those that cause food poisoning – emerged from commensal ancestors (Pupo et al., 2000).
Historically, the bacterial genus Rhodococcus has been synonymous with pathogenesis because most described strains could cause a plant disease called leafy gall and stunt the growth of their plant hosts (Stes et al., 2011). Recently, it was found that some Rhodococcus strains are benign, and some are constituents of a healthy microbiome in plants (Bai et al., 2015; Hong et al., 2016). Now, in eLife, Jeff Chang of Oregon State University and co-workers – including Elizabeth Savory, Skylar Fuller and Alexandra Weisberg as joint first authors – report using a collection of Rhodococcus strains to study the molecular mechanisms that underlie distinct bacterial lifestyles (Savory et al., 2017).
Savory et al. isolated 60 strains of Rhodococcus bacteria from healthy and diseased plants from 16 nurseries over a period of several years and then sequenced their genomes and plasmids (which usually contain the virulence genes which make Rhodococcus pathogenic). The researchers compared pathogenic and commensal strains and used single nucleotide polymorphisms to reconstruct evolutionary histories within the Rhodococcus genus. They found relatively little correlation between the genome sequences of a strain and the DNA sequences in the plasmids. In particular, they found that isolates with similar genomes could have plasmids with radically different virulence genes, while plasmids with similar virulence genes could be found in strains with very different genomes. This suggests that the emergence of pathogenic strains may be driven by the transfer of plasmids between strains that are relatively evolutionarily distant from each other.
The researchers identified Rhodococcus isolates that lack a virulence plasmid but are close relatives of isolates that possess a plasmid. They showed that Rhodococccus isolates that lack a virulence plasmid can colonize Nicotiana benthamiana, a model plant that is susceptible to Rhodococcus infection. However, rather than causing disease, the strains lacking a virulence plasmid promoted the development of lateral roots and root hairs (Figure 1). This indicates that beneficial and pathogenic Rhodococcus are closely related, which led Savory et al. to hypothesize that the commensal and pathogenic Rhodococcus may evolve by the acquisition or loss of a virulence plasmid.

The good and bad sides of Rhodococcus.
The acquisition of a virulence plasmid (yellow) can transform benign commensal strains of Rhodococcus (blue) into pathogenic strains (blue and yellow) that stunt the growth of the plant and its roots (left) compared with a healthy plant (right). However, this process is reversible, and the loss of the virulence plasmid results in the bacteria becoming commensal again.
Savory et al. went on to experimentally demonstrate that pathogenic Rhodococcus strains can evolve from commensals. They showed that the introduction of a virulence plasmid from a pathogenic isolate into a beneficial strain was sufficient to cause disease in N. benthamiana. They also showed that the transition from commensal to pathogen is reversible: plasmid loss causes a virulent strain to become beneficial. By combining experimental data with genomic evidence, Savory et al. conclusively demonstrate that a readily transmissible plasmid is necessary and sufficient to reversibly transform beneficial Rhodococcus strains into pathogens.
Recently, it has been alleged that various strains of Rhodococcus are the cause of “pistachio bushy top syndrome” (PBTS), which has affected millions of pistachio trees in the United States and resulted in substantial economic losses (Stamler et al., 2015). However, rapid evolutionary changes present a challenge in identifying the pathogenic agents responsible for PBTS. Savory et al. tested the virulence of two Rhodococcus strains purported to be the causative agents of PBTS on several different hosts: they found that both isolates were not pathogenic. Moreover, they report that they were unable to amplify Rhodococcus virulence genes by PCR. This, combined with the fact that the published genomes of these strains do not contain virulence loci (Stamler et al., 2016), suggests that the plasmid was lost during isolation or that the disease was misdiagnosed.
The ambiguity of the cause of PBTS underscores the need for multiple independent methods that can verify the identity of an emerging plant pathogen, particularly when it has benign close relatives. To this end, Savory et al. developed an alternative method of identifying virulent strains of Rhodococcus based on recombinase polymerase amplification, and showed that this test could robustly discriminate between pathogenic and beneficial strains by targeting conserved loci in the virulence plasmid.
The work of Savory et al. provides insights into the evolutionary history of plant pathogens and mutualists. In particular, the coincidence of virulence and mutualism within the Rhodococcus clade suggests that both strategies are adaptive under certain conditions: sustained positive selection for one lifestyle would be unlikely to result in closely related strains with dramatically different effects on plant health. Building on this work may illuminate the evolutionary mechanisms that drive transitions from beneficial to pathogenic lifestyles in bacteria. This in turn could have profound implications for the management of emerging agricultural diseases and the evolution of plant-microbe interactions.
References
-
A leaf-inhabiting endophytic bacterium, Rhodococcus sp. kb6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriataJournal of Microbiology and Biotechnology 26:488–492.https://doi.org/10.4014/jmb.1511.11039
-
A successful bacterial coup d'état: how Rhodococcus fascians redirects plant developmentAnnual Review of Phytopathology 49:69–86.https://doi.org/10.1146/annurev-phyto-072910-095217
Article and author information
Author details
Publication history
Copyright
© 2017, Melnyk et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,423
- views
-
- 166
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
Background:
Biological aging exhibits heterogeneity across multi-organ systems. However, it remains unclear how is lifestyle associated with overall and organ-specific aging and which factors contribute most in Southwest China.
Methods:
This study involved 8396 participants who completed two surveys from the China Multi-Ethnic Cohort (CMEC) study. The healthy lifestyle index (HLI) was developed using five lifestyle factors: smoking, alcohol, diet, exercise, and sleep. The comprehensive and organ-specific biological ages (BAs) were calculated using the Klemera–Doubal method based on longitudinal clinical laboratory measurements, and validation were conducted to select BA reflecting related diseases. Fixed effects model was used to examine the associations between HLI or its components and the acceleration of validated BAs. We further evaluated the relative contribution of lifestyle components to comprehension and organ systems BAs using quantile G-computation.
Results:
About two-thirds of participants changed HLI scores between surveys. After validation, three organ-specific BAs (the cardiopulmonary, metabolic, and liver BAs) were identified as reflective of specific diseases and included in further analyses with the comprehensive BA. The health alterations in HLI showed a protective association with the acceleration of all BAs, with a mean shift of –0.19 (95% CI −0.34, –0.03) in the comprehensive BA acceleration. Diet and smoking were the major contributors to overall negative associations of five lifestyle factors, with the comprehensive BA and metabolic BA accounting for 24% and 55% respectively.
Conclusions:
Healthy lifestyle changes were inversely related to comprehensive and organ-specific biological aging in Southwest China, with diet and smoking contributing most to comprehensive and metabolic BA separately. Our findings highlight the potential of lifestyle interventions to decelerate aging and identify intervention targets to limit organ-specific aging in less-developed regions.
Funding:
This work was primarily supported by the National Natural Science Foundation of China (Grant No. 82273740) and Sichuan Science and Technology Program (Natural Science Foundation of Sichuan Province, Grant No. 2024NSFSC0552). The CMEC study was funded by the National Key Research and Development Program of China (Grant No. 2017YFC0907305, 2017YFC0907300). The sponsors had no role in the design, analysis, interpretation, or writing of this article.
-
- Epidemiology and Global Health
- Microbiology and Infectious Disease
Background:
In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.
Methods:
We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).
Results:
275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.
Conclusions:
In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.
Funding:
This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).