Abstract

A universal and unquestioned characteristic of eukaryotic cells is that the genome is divided into multiple chromosomes and encapsulated in a single nucleus. However, the underlying mechanism to ensure such a configuration is unknown. Here we provide evidence that pericentromeric satellite DNA, which is often regarded as junk, is a critical constituent of the chromosome, allowing the packaging of all chromosomes into a single nucleus. We show that the multi AT-hook satellite DNA binding proteins, D. melanogaster D1 and mouse HMGA1, play an evolutionarily conserved role in bundling pericentromeric satellite DNA from heterologous chromosomes into 'chromocenters', a cytological association of pericentromeric heterochromatin. Defective chromocenter formation leads to micronuclei formation due to budding from the interphase nucleus, DNA damage and cell death. We propose that chromocenter and satellite DNA serves a fundamental role in encapsulating the full complement of the genome within a single nucleus, the universal characteristic of eukaryotic cells.

Article and author information

Author details

  1. Madhav Jagannathan

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Ryan Cummings

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Yukiko M Yamashita

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    yukikomy@umich.edu
    Competing interests
    Yukiko M Yamashita, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5541-0216

Funding

Howard Hughes Medical Institute

  • Yukiko M Yamashita

National Institute of General Medical Sciences

  • Yukiko M Yamashita

American Heart Association

  • Madhav Jagannathan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: December 5, 2017
  2. Accepted: March 24, 2018
  3. Accepted Manuscript published: March 26, 2018 (version 1)
  4. Version of Record published: May 17, 2018 (version 2)

Copyright

© 2018, Jagannathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,705
    views
  • 1,612
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madhav Jagannathan
  2. Ryan Cummings
  3. Yukiko M Yamashita
(2018)
A conserved function for pericentromeric satellite DNA
eLife 7:e34122.
https://doi.org/10.7554/eLife.34122

Share this article

https://doi.org/10.7554/eLife.34122

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Susan A Gerbi
    Insight

    Structures known as chromocenters, comprising satellite DNA and proteins such as D1 or HMGA1, help to contain DNA inside the nucleus between cell divisions.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.