Abstract

Parkinson's disease is a progressive neuropathological disorder that belongs to the class of synucleopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1-121), determined by cryo-electron microscopy structure at a resolution of 3.4Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50-57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.

Data availability

The cryo-EM image data are available in the Electron Microscopy Public Image Archive, entry number EMPIAR-10195. The 3D map is available in the EMDB, entry number EMD-4276. The atomic coordinates are available at the PDB, entry number PDB 6FLT.

The following data sets were generated
    1. Guerrero-Ferreira R
    2. Taylor NMI
    3. Mona D
    4. Riek R
    5. Britschgi M
    6. Stahlberg H
    (2018) Structure of alpha-synuclein fibrils
    Publicly available at the Electron Microscopy Data Bank (accession no. EMD-4276).
    1. Guerrero-Ferreira R
    2. Taylor NMI
    3. Mona D
    4. Riek R
    5. Britschgi M
    6. Stahlberg H
    (2018) Structure of alpha-synuclein fibrils
    Publicly available at the Electron Microscopy Public Image Archive (accession no. EMPIAR-10195).

Article and author information

Author details

  1. Ricardo Guerrero-Ferreira

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3664-8277
  2. Nicholas M I Taylor

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0761-4921
  3. Daniel Mona

    Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Daniel Mona, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  4. Philippe Ringler

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  5. Matthias E Lauer

    Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Matthias E Lauer, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  6. Roland Riek

    Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  7. Markus Britschgi

    Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Markus Britschgi, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  8. Henning Stahlberg

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    For correspondence
    Henning.Stahlberg@unibas.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1185-4592

Funding

Swiss National Science Foundation (CRSII3_154461 and CRSII5_177195)

  • Ricardo Guerrero-Ferreira
  • Nicholas M I Taylor

Synapsis Foundation Switzerland

  • Henning Stahlberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Guerrero-Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21,896
    views
  • 3,316
    downloads
  • 470
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ricardo Guerrero-Ferreira
  2. Nicholas M I Taylor
  3. Daniel Mona
  4. Philippe Ringler
  5. Matthias E Lauer
  6. Roland Riek
  7. Markus Britschgi
  8. Henning Stahlberg
(2018)
Cryo-EM structure of alpha-synuclein fibrils
eLife 7:e36402.
https://doi.org/10.7554/eLife.36402

Share this article

https://doi.org/10.7554/eLife.36402

Further reading

    1. Neuroscience
    Jiwon Jeong, Kujin Kwon ... Chunghun Lim
    Research Article Updated

    Drosophila establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Drosophila Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity. The developmental inferiority in short-SD individuals was compensated by their group culturing. By contrast, developmental isolation silenced the beneficial effects of social interactions in adults and blunted the plasticity of SNB under physiological challenges. Transcriptome analyses revealed genetic diversity for SD traits, whereas social isolation reprogrammed select genetic pathways, regardless of SD phenotypes. In particular, social deprivation suppressed the expression of the neuropeptide Drosulfakinin (Dsk) in three pairs of adult brain neurons. Male-specific DSK signaling to cholecystokinin-like receptor 17D1 mediated the SNB plasticity. In fact, transgenic manipulations of the DSK neuron activity were sufficient to imitate the state of social experience. Given the functional conservation of mammalian Dsk homologs, we propose that animals may have evolved a dedicated neural mechanism to encode early-life experience and transform group properties adaptively.

    1. Genetics and Genomics
    2. Neuroscience
    Timothy J Abreo, Emma C Thompson ... Edward C Cooper
    Research Article

    KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. Kcnq2G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.