Abstract

Parkinson's disease is a progressive neuropathological disorder that belongs to the class of synucleopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1-121), determined by cryo-electron microscopy structure at a resolution of 3.4Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50-57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.

Data availability

The cryo-EM image data are available in the Electron Microscopy Public Image Archive, entry number EMPIAR-10195. The 3D map is available in the EMDB, entry number EMD-4276. The atomic coordinates are available at the PDB, entry number PDB 6FLT.

The following data sets were generated
    1. Guerrero-Ferreira R
    2. Taylor NMI
    3. Mona D
    4. Riek R
    5. Britschgi M
    6. Stahlberg H
    (2018) Structure of alpha-synuclein fibrils
    Publicly available at the Electron Microscopy Data Bank (accession no. EMD-4276).
    1. Guerrero-Ferreira R
    2. Taylor NMI
    3. Mona D
    4. Riek R
    5. Britschgi M
    6. Stahlberg H
    (2018) Structure of alpha-synuclein fibrils
    Publicly available at the Electron Microscopy Public Image Archive (accession no. EMPIAR-10195).

Article and author information

Author details

  1. Ricardo Guerrero-Ferreira

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3664-8277
  2. Nicholas M I Taylor

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0761-4921
  3. Daniel Mona

    Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Daniel Mona, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  4. Philippe Ringler

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  5. Matthias E Lauer

    Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Matthias E Lauer, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  6. Roland Riek

    Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  7. Markus Britschgi

    Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    Markus Britschgi, Employed by Hoffmann-La Roche. There are no other competing interests to declare..
  8. Henning Stahlberg

    Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
    For correspondence
    Henning.Stahlberg@unibas.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1185-4592

Funding

Swiss National Science Foundation (CRSII3_154461 and CRSII5_177195)

  • Ricardo Guerrero-Ferreira
  • Nicholas M I Taylor

Synapsis Foundation Switzerland

  • Henning Stahlberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Guerrero-Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21,964
    views
  • 3,324
    downloads
  • 477
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ricardo Guerrero-Ferreira
  2. Nicholas M I Taylor
  3. Daniel Mona
  4. Philippe Ringler
  5. Matthias E Lauer
  6. Roland Riek
  7. Markus Britschgi
  8. Henning Stahlberg
(2018)
Cryo-EM structure of alpha-synuclein fibrils
eLife 7:e36402.
https://doi.org/10.7554/eLife.36402

Share this article

https://doi.org/10.7554/eLife.36402

Further reading

    1. Neuroscience
    Devanshi Piyush Shah, Pallavi Raj Sharma ... Arnab Barik
    Research Article

    Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood. Here, we describe how the dorsal lateral septum (dLS), a forebrain limbic nucleus, facilitates SIA through its downstream targets in the lateral hypothalamic area (LHA) of mice. Taking advantage of transsynaptic viral-genetic, optogenetic, and chemogenetic techniques, we show that the dLS→LHA circuitry is sufficient to drive analgesia and is required for SIA. Furthermore, our results reveal that the dLS→LHA pathway is opioid-dependent and modulates pain through the pro-nociceptive neurons in the rostral ventromedial medulla (RVM). Remarkably, we found that the inhibitory dLS neurons are recruited specifically when the mice struggle to escape under restraint and, in turn, inhibit excitatory LHA neurons. As a result, the RVM neurons downstream of LHA are disengaged, thus suppressing nociception. Together, we delineate a poly-synaptic pathway that can transform escape behavior in mice under restraint to acute stress into analgesia.

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.