Pharmacology: A Swiss army knife for targeting receptors

A compound can change the activity of NMDA receptors in some regions of a synapse without affecting those in other regions.
  1. Johansen B Amin  Is a corresponding author
  2. Lonnie P Wollmuth  Is a corresponding author
  1. Stony Brook University, United States

Most medicines are fairly blunt devices, which means that clinicians are often unable to account for the uniqueness of a patient when treating a specific ailment. A drug that could be modified to achieve different aims – like a Swiss army knife – would help to address this problem.

The cells of the nervous system talk to each other at structures called synapses, where the electrical signal in the first neuron is converted into a chemical signal that is carried to the second neuron by molecules called neurotransmitters. When the neurotransmitters reach the second neuron they interact with receptor proteins that are directly coupled to ion channels. Glutamate is the most prominent neurotransmitter in the brain, and glutamate-gated NMDA receptors are involved in almost every process in the brain: whether you are thinking about something or doing something, NMDA receptors are involved.

With the good, however, comes the bad: faulty NMDA receptor activity contributes to numerous neurological and psychiatric disorders. And although the central role of NMDA receptors in brain disorders has long been known, finding treatments that target such receptors has proven challenging (Kalia et al., 2008). The problem starts with the ubiquitous distribution of NMDA receptors. A drug that blocks all NMDA receptors (a so-called broad-spectrum inhibitor) will have many detrimental off-target effects, so drugs that only act on the receptors involved in specific diseases are needed.

How does one target something as complex as an NMDA receptor, which contains four subunits? It helps to know that two of these are always so-called GluN1 subunits, and that the other two subunits can be selected from a pool of four GluN2 subunits (Figure 1). These last two subunits confer unique physiological and pharmacological properties on the NMDA receptors, which can therefore behave differently, depending on the region of the brain or the stage of development (Glasgow et al., 2015; Paoletti et al., 2013). To date, researchers have focused on NMDA receptors in which the two GluN2 subunits are the same, but most of the NMDA receptors in the brain are thought to contain two different GluN2 subunits (Tovar et al., 2013). Targeting the different subunits of NMDA receptors has resulted in some progress, but additional aspects are needed to encompass the full complexity of NMDARs (Ogden and Traynelis, 2011; Hackos and Hanson, 2017).

Targeting NMDA receptors.

A neuron (gray; top) communicates with a second neuron (gray; bottom) by releasing molecules called neurotransmitters into the synapse between the two neurons; the neurotransmitters then bind to and activate receptor proteins on the second neuron. The neurotransmitter glutamate (blue dots) and the NMDA receptors (colored shapes) it binds to, are essential for most processes in the brain. Many disorders, including schizophrenia and stroke, are associated with faulty activity of the receptors. NMDA receptors contain two GluN1 subunits (gray ovals) and two GluN2 subunits (colored ovals). Perzsyk et al. discovered a chemical compound that can bind to receptors outside the synapse (extrasynaptic receptors), where glutamate levels are low (light blue shaded areas). Synaptic receptors, where glutamate levels are high (dark blue shaded areas), are an ideal target for treatment of schizophrenia.

Now, in eLife, Stephen Traynelis of Emory University and colleagues – including Riley Perszyk as first author – report how specific compounds can modulate NMDA receptors in unique ways (Perszyk et al., 2018). The researchers identified different chemical compounds to tackle another aspect of NMDA receptor diversity: their distribution on the neuron.

NMDA receptors can be synaptic (that is, they reside inside the synapse) or extrasynaptic (outside the synapse). These different pools of receptors behave in distinct ways. For instance, synaptic NMDA receptors activate pathways that are necessary for the survival of cells, whereas extrasynaptic NMDA receptors can induce pathways that lead to the death of cells (Papadia and Hardingham, 2007). Indeed, extrasynaptic NMDA receptors have been identified as the primary culprit responsible for cell death in stroke and Huntington’s disease (Parsons and Raymond, 2014). However, we have lacked ways to target extrasynaptic NMDA receptors.

Perszyk et al. tested a class of chemical compounds against certain subunits of NMDA receptors and discovered that small changes to the chemical structure of these compounds could change the action of the receptors. For example, one compound called EU1794-4 affected synaptic and extrasynaptic NMDA receptors differently. In particular, this compound activated the receptor at low concentrations of glutamate but inhibited it at high glutamate concentrations. This means that EU1794-4 affects extrasynaptic receptors (which experience low levels of glutamate) and synaptic receptors (which experience high levels of glutamate) in different ways (Figure 1). Thus, in addition to subunit preference, this class of modulator has the potential to target NMDA receptors in certain regions and can change their activity without fully blocking the response. This makes EU1794-4 a unique tool for controlling the neuronal network without causing too many side effects.

The advances reported by Perszyk et al. are numerous. First, we now have the opportunity to specifically study synaptic and extrasynaptic NMDA receptors, especially their subunits – a challenging endeavor nevertheless. Second, Perszyk et al. were able to tailor the actions of these compounds – switching between negative and positive modulation, solely by making subtle changes in the compound structure. Drugs that are customizable for effect – with a specific subunit and regional affinity – could selectively target numerous diseases (Figure 1). Indeed, with a Swiss army knife modulator, a rational treatment of diseases associated with faulty NMDA receptor activity may finally be on the horizon.

References

Article and author information

Author details

  1. Johansen B Amin

    Johansen B Amin is in the Program in Cellular and Molecular Biology and the Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, United States

    For correspondence
    Johansen.Amin@stonybrookmedicine.edu
    Competing interests
    No competing interests declared
  2. Lonnie P Wollmuth

    Lonnie P Wollmuth is in the Center for Nervous System Disorders, the Department of Neurobiology and Behavior, and the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States.

    For correspondence
    Lonnie.Wollmuth@stonybrook.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8179-1259

Publication history

  1. Version of Record published: May 24, 2018 (version 1)

Copyright

© 2018, Amin et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,232
    Page views
  • 107
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johansen B Amin
  2. Lonnie P Wollmuth
(2018)
Pharmacology: A Swiss army knife for targeting receptors
eLife 7:e37413.
https://doi.org/10.7554/eLife.37413

Further reading

    1. Neuroscience
    William T Redman et al.
    Tools and Resources

    The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry.

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.