Pharmacology: A Swiss army knife for targeting receptors

A compound can change the activity of NMDA receptors in some regions of a synapse without affecting those in other regions.
  1. Johansen B Amin  Is a corresponding author
  2. Lonnie P Wollmuth  Is a corresponding author
  1. Stony Brook University, United States

Most medicines are fairly blunt devices, which means that clinicians are often unable to account for the uniqueness of a patient when treating a specific ailment. A drug that could be modified to achieve different aims – like a Swiss army knife – would help to address this problem.

The cells of the nervous system talk to each other at structures called synapses, where the electrical signal in the first neuron is converted into a chemical signal that is carried to the second neuron by molecules called neurotransmitters. When the neurotransmitters reach the second neuron they interact with receptor proteins that are directly coupled to ion channels. Glutamate is the most prominent neurotransmitter in the brain, and glutamate-gated NMDA receptors are involved in almost every process in the brain: whether you are thinking about something or doing something, NMDA receptors are involved.

With the good, however, comes the bad: faulty NMDA receptor activity contributes to numerous neurological and psychiatric disorders. And although the central role of NMDA receptors in brain disorders has long been known, finding treatments that target such receptors has proven challenging (Kalia et al., 2008). The problem starts with the ubiquitous distribution of NMDA receptors. A drug that blocks all NMDA receptors (a so-called broad-spectrum inhibitor) will have many detrimental off-target effects, so drugs that only act on the receptors involved in specific diseases are needed.

How does one target something as complex as an NMDA receptor, which contains four subunits? It helps to know that two of these are always so-called GluN1 subunits, and that the other two subunits can be selected from a pool of four GluN2 subunits (Figure 1). These last two subunits confer unique physiological and pharmacological properties on the NMDA receptors, which can therefore behave differently, depending on the region of the brain or the stage of development (Glasgow et al., 2015; Paoletti et al., 2013). To date, researchers have focused on NMDA receptors in which the two GluN2 subunits are the same, but most of the NMDA receptors in the brain are thought to contain two different GluN2 subunits (Tovar et al., 2013). Targeting the different subunits of NMDA receptors has resulted in some progress, but additional aspects are needed to encompass the full complexity of NMDARs (Ogden and Traynelis, 2011; Hackos and Hanson, 2017).

Targeting NMDA receptors.

A neuron (gray; top) communicates with a second neuron (gray; bottom) by releasing molecules called neurotransmitters into the synapse between the two neurons; the neurotransmitters then bind to and activate receptor proteins on the second neuron. The neurotransmitter glutamate (blue dots) and the NMDA receptors (colored shapes) it binds to, are essential for most processes in the brain. Many disorders, including schizophrenia and stroke, are associated with faulty activity of the receptors. NMDA receptors contain two GluN1 subunits (gray ovals) and two GluN2 subunits (colored ovals). Perzsyk et al. discovered a chemical compound that can bind to receptors outside the synapse (extrasynaptic receptors), where glutamate levels are low (light blue shaded areas). Synaptic receptors, where glutamate levels are high (dark blue shaded areas), are an ideal target for treatment of schizophrenia.

Now, in eLife, Stephen Traynelis of Emory University and colleagues – including Riley Perszyk as first author – report how specific compounds can modulate NMDA receptors in unique ways (Perszyk et al., 2018). The researchers identified different chemical compounds to tackle another aspect of NMDA receptor diversity: their distribution on the neuron.

NMDA receptors can be synaptic (that is, they reside inside the synapse) or extrasynaptic (outside the synapse). These different pools of receptors behave in distinct ways. For instance, synaptic NMDA receptors activate pathways that are necessary for the survival of cells, whereas extrasynaptic NMDA receptors can induce pathways that lead to the death of cells (Papadia and Hardingham, 2007). Indeed, extrasynaptic NMDA receptors have been identified as the primary culprit responsible for cell death in stroke and Huntington’s disease (Parsons and Raymond, 2014). However, we have lacked ways to target extrasynaptic NMDA receptors.

Perszyk et al. tested a class of chemical compounds against certain subunits of NMDA receptors and discovered that small changes to the chemical structure of these compounds could change the action of the receptors. For example, one compound called EU1794-4 affected synaptic and extrasynaptic NMDA receptors differently. In particular, this compound activated the receptor at low concentrations of glutamate but inhibited it at high glutamate concentrations. This means that EU1794-4 affects extrasynaptic receptors (which experience low levels of glutamate) and synaptic receptors (which experience high levels of glutamate) in different ways (Figure 1). Thus, in addition to subunit preference, this class of modulator has the potential to target NMDA receptors in certain regions and can change their activity without fully blocking the response. This makes EU1794-4 a unique tool for controlling the neuronal network without causing too many side effects.

The advances reported by Perszyk et al. are numerous. First, we now have the opportunity to specifically study synaptic and extrasynaptic NMDA receptors, especially their subunits – a challenging endeavor nevertheless. Second, Perszyk et al. were able to tailor the actions of these compounds – switching between negative and positive modulation, solely by making subtle changes in the compound structure. Drugs that are customizable for effect – with a specific subunit and regional affinity – could selectively target numerous diseases (Figure 1). Indeed, with a Swiss army knife modulator, a rational treatment of diseases associated with faulty NMDA receptor activity may finally be on the horizon.

References

Article and author information

Author details

  1. Johansen B Amin

    Johansen B Amin is in the Program in Cellular and Molecular Biology and the Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, United States

    For correspondence
    Johansen.Amin@stonybrookmedicine.edu
    Competing interests
    No competing interests declared
  2. Lonnie P Wollmuth

    Lonnie P Wollmuth is in the Center for Nervous System Disorders, the Department of Neurobiology and Behavior, and the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States.

    For correspondence
    Lonnie.Wollmuth@stonybrook.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8179-1259

Publication history

  1. Version of Record published:

Copyright

© 2018, Amin et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,287
    views
  • 115
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johansen B Amin
  2. Lonnie P Wollmuth
(2018)
Pharmacology: A Swiss army knife for targeting receptors
eLife 7:e37413.
https://doi.org/10.7554/eLife.37413

Further reading

    1. Cell Biology
    2. Neuroscience
    Sara Bitar, Timo Baumann ... Axel Methner
    Research Article Updated

    Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila ortholog of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.

    1. Neuroscience
    Hohyun Cho, Markus Adamek ... Peter Brunner
    Tools and Resources

    Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/f noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation’s fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method’s specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.