RNA World: Visualizing primer extension without enzymes

X-ray crystallography has been used to observe the synthesis of RNA in the absence of enzymes with atomic resolution.
  1. John C Chaput  Is a corresponding author
  1. University of California, Irvine, United States

How life on Earth began remains one of the greatest scientific mysteries of our time. According to the phylogenetic record, all forms of life, both extant and extinct, are known to store genetic information in DNA and use proteins as enzymes to catalyze metabolic reactions (Joyce, 2002). However, considerable evidence exists to support the idea that modern life was preceded by simpler forms that were based on RNA rather than DNA (Atkins et al., 2011). This hypothetical period, commonly referred to as the RNA world, represents a time when RNA served as the sole genetic material and RNA enzymes (ribozymes) were used to catalyze reactions within primitive cells.

It is well established that RNA can store information and catalyze reactions, so it is possible to envision how modern life could have evolved from RNA-based life. However, it is less clear how the RNA world came into being. Researchers studying this problem have focused on the transition from chemistry to biology, which can be broken down into a number of individual steps, each with its own set of testable hypotheses (Szostak, 2012). Challenges include finding plausible prebiotic routes to the building blocks of life, discovering a mechanism for their assembly into primitive cells, and demonstrating the emergence of Darwinian behaviors through a process of RNA replication with heritable variation.

Recent research advances include the prebiotic synthesis of nucleotides, which are the building blocks of RNA (Powner et al., 2009), and the synthesis of RNA by RNA polymerase ribozymes (Horning and Joyce, 2016; Wang et al., 2011; Wochner et al., 2011). However, despite this progress, significant gaps remain in our knowledge of the RNA world. One major unanswered question is how RNA synthesis happened before the first appearance of an RNA polymerase ribozyme.

Non-enzymatic chemical synthesis of RNA offers a possible bridge between prebiotic chemistry (the molecules and chemical reactions that lead to the emergence of life) and the RNA world (Joyce, 1987). For over 30 years, researchers have used non-enzymatic, template-directed primer extension reactions to study the process of RNA synthesis in the absence of enzymes (proteins or RNA). This approach was thought to involve the stepwise addition of single nucleotides (also known as monomers) to an RNA primer that was base-paired to an RNA template. However, recent work has shown that the critical intermediate is not the monomer, as had been assumed, but a structure containing two nucleotides – called the dinucleotide intermediate (Walton and Szostak, 2016).

Preliminary structural insights into the functional role of the dinucleotide intermediate were initially obtained by X-ray crystallography using crystals of an RNA primer-template duplex bound to a structural analog of the predicted intermediate (Zhang et al., 2017). However, a full understanding of the process requires information about how the structure of the primer-template complex and the actual intermediate changes over time. Now, in eLife, Jack Szostak of the Massachusetts General Hospital and Harvard Medical School and co-workers – Wen Zhang, Travis Walton, and Li Li – report that they have used time-resolved X-ray crystallography to reveal new details about non-enzymatic RNA synthesis (Zhang et al., 2018).

Zhang et al. first made crystals of the RNA primer-template complex with a non-reactive monomer. Activated monomers were then introduced into the crystal by a process of soaking, and as the activated monomers replaced the non-reactive monomers, primer extension began. The researchers used liquid nitrogen to freeze the samples at different times and X-ray crystallography to determine the structures with atomic resolution. This process provided a sequence of events that included all the steps of non-enzymatic RNA synthesis: the activated nucleotides bind to the template, pairs of nucleotides form the intermediate and, finally, a bond is formed between the RNA primer and the intermediate to extend the primer by one nucleotide – all without the involvement of any enzymes.

The observations made by Zhang et al. are nothing short of amazing and will likely influence the field of non-enzymatic RNA synthesis for years to come. In addition to revealing the reaction mechanism, the structures also explain why the primer reacts more readily with the activated intermediate than a template-bound monomer. Namely, pre-organizing the intermediate on the template reduces the distance between the primer and the adjacent nucleotide, which enables the primer to react more rapidly with the dinucleotide intermediate than it could with an individual monomer. While further questions persist, these findings serve as a monumental achievement and a stepping stone towards understanding the origin of the RNA world and the evolution of life on Earth.

References

  1. Book
    1. Atkins JF
    2. Gesteland RF
    3. Cech TR
    (2011)
    RNA Worlds: From Life's Origins to Diversity in Gene Regulation
    Cold Spring Harbor Laboratory.

Article and author information

Author details

  1. John C Chaput

    John C Chaput is in the Department of Pharmaceutical Sciences, the Department of Chemistry, and the Department of Molecular Biology & Biochemistry, University of California, Irvine, United States

    For correspondence
    jchaput@uci.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1393-135X

Publication history

  1. Version of Record published: May 31, 2018 (version 1)

Copyright

© 2018, Chaput

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,932
    Page views
  • 136
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John C Chaput
(2018)
RNA World: Visualizing primer extension without enzymes
eLife 7:e37926.
https://doi.org/10.7554/eLife.37926
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Ivan Corbeski, Pablo Andrés Vargas-Rosales ... Amedeo Caflisch
    Research Article

    The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zhi Li, Yuedi Wang ... Zeyang Zhou
    Research Article

    Imidacloprid is a global health threat that severely poisons the economically and ecologically important honeybee pollinator, Apis mellifera. However, its effects on developing bee larvae remain largely unexplored. Our pilot study showed that imidacloprid causes developmental delay in bee larvae, but the underlying toxicological mechanisms remain incompletely understood. In this study, we exposed bee larvae to imidacloprid at environmentally relevant concentrations of 0.7, 1.2, 3.1, and 377 ppb. There was a marked dose-dependent delay in larval development, characterized by reductions in body mass, width, and growth index. However, imidacloprid did not affect on larval survival and food consumption. The primary toxicological effects induced by elevated concentrations of imidacloprid (377 ppb) included inhibition of neural transmission gene expression, induction of oxidative stress, gut structural damage, and apoptosis, inhibition of developmental regulatory hormones and genes, suppression of gene expression levels involved in proteolysis, amino acid transport, protein synthesis, carbohydrate catabolism, oxidative phosphorylation, and glycolysis energy production. In addition, we found that the larvae may use antioxidant defenses and P450 detoxification mechanisms to mitigate the effects of imidacloprid. Ultimately, this study provides the first evidence that environmentally exposed imidacloprid can affect the growth and development of bee larvae by disrupting molting regulation and limiting the metabolism and utilization of dietary nutrients and energy. These findings have broader implications for studies assessing pesticide hazards in other juvenile animals.