Intrinsically regulated learning is modulated by synaptic dopamine signaling
Abstract
We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioural sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hours only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.
Data availability
Data is available via Dryad (https://dx.doi.org/10.5061/dryad.g5f7v1j)
-
Data from: Intrinsically regulated learning is modulated by synaptic dopamine signalingAvailable at Dryad Digital Repository under a CC0 Public Domain Dedication.
Article and author information
Author details
Funding
Ministerio de Industria, Economía y Competitividad (PSI2011-29219)
- Antoni Rodriguez-Fornells
Ministerio de Industria, Economía y Competitividad (AP2010-4179)
- Pablo Ripollés
Morelly-Rotary Postdoctoral Fellowship
- Laura Ferreri
Ministerio de Sanidad, Servicios Sociales e Igualdad (CP04/00 121)
- Marta Valle
Deutsche Forschungsgemeinschaft (DFG-SFB-779/A15)
- Toemme Noesselt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was performed according to local ethics and to the Declaration of Helsinki. It was approved by the Ethics Committee of Hospital Sant Pau and by the Spanish Medicines and Medical Devices Agency (EudraCT 2016-000801-35). All participants gave informed written consent and received compensation for their participation in the study according to Spanish legislation.
Copyright
© 2018, Ripollés et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,511
- views
-
- 360
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon’s route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.
-
- Neuroscience
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.