Intrinsically regulated learning is modulated by synaptic dopamine signaling

  1. Pablo Ripollés  Is a corresponding author
  2. Laura Ferreri
  3. Ernest Mas-Herrero
  4. Helena Alicart
  5. Alba Gómez-Andrés
  6. Josep Marco-Pallares
  7. Rosa Maria Antonijoan
  8. Toemme Noesselt  Is a corresponding author
  9. Marta Valle
  10. Jordi Riba
  11. Antoni Rodriguez-Fornells  Is a corresponding author
  1. New York University, United States
  2. L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Spain
  3. McGill University, Canada
  4. Universitat Autònoma de Barcelona, Spain
  5. Otto-von-Guericke University, Germany
  6. Sant Pau Institute of Biomedical Research, Spain

Abstract

We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioural sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hours only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.

Data availability

Data is available via Dryad (https://dx.doi.org/10.5061/dryad.g5f7v1j)

The following data sets were generated

Article and author information

Author details

  1. Pablo Ripollés

    Department of Psychology, New York University, New York, United States
    For correspondence
    pabloripollesvidal@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8463-3723
  2. Laura Ferreri

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ernest Mas-Herrero

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Helena Alicart

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Alba Gómez-Andrés

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Josep Marco-Pallares

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Rosa Maria Antonijoan

    Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Toemme Noesselt

    Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
    For correspondence
    toemme@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9611-9713
  9. Marta Valle

    Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Jordi Riba

    Human Neuropsychopharmacology Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Antoni Rodriguez-Fornells

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    For correspondence
    antoni.rodriguez@icrea.cat
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Industria, Economía y Competitividad (PSI2011-29219)

  • Antoni Rodriguez-Fornells

Ministerio de Industria, Economía y Competitividad (AP2010-4179)

  • Pablo Ripollés

Morelly-Rotary Postdoctoral Fellowship

  • Laura Ferreri

Ministerio de Sanidad, Servicios Sociales e Igualdad (CP04/00 121)

  • Marta Valle

Deutsche Forschungsgemeinschaft (DFG-SFB-779/A15)

  • Toemme Noesselt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was performed according to local ethics and to the Declaration of Helsinki. It was approved by the Ethics Committee of Hospital Sant Pau and by the Spanish Medicines and Medical Devices Agency (EudraCT 2016-000801-35). All participants gave informed written consent and received compensation for their participation in the study according to Spanish legislation.

Copyright

© 2018, Ripollés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,532
    views
  • 360
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Ripollés
  2. Laura Ferreri
  3. Ernest Mas-Herrero
  4. Helena Alicart
  5. Alba Gómez-Andrés
  6. Josep Marco-Pallares
  7. Rosa Maria Antonijoan
  8. Toemme Noesselt
  9. Marta Valle
  10. Jordi Riba
  11. Antoni Rodriguez-Fornells
(2018)
Intrinsically regulated learning is modulated by synaptic dopamine signaling
eLife 7:e38113.
https://doi.org/10.7554/eLife.38113

Share this article

https://doi.org/10.7554/eLife.38113

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.