Intrinsically regulated learning is modulated by synaptic dopamine signaling

  1. Pablo Ripollés  Is a corresponding author
  2. Laura Ferreri
  3. Ernest Mas-Herrero
  4. Helena Alicart
  5. Alba Gómez-Andrés
  6. Josep Marco-Pallares
  7. Rosa Maria Antonijoan
  8. Toemme Noesselt  Is a corresponding author
  9. Marta Valle
  10. Jordi Riba
  11. Antoni Rodriguez-Fornells  Is a corresponding author
  1. New York University, United States
  2. L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Spain
  3. McGill University, Canada
  4. Universitat Autònoma de Barcelona, Spain
  5. Otto-von-Guericke University, Germany
  6. Sant Pau Institute of Biomedical Research, Spain

Abstract

We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioural sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hours only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.

Data availability

Data is available via Dryad (https://dx.doi.org/10.5061/dryad.g5f7v1j)

The following data sets were generated

Article and author information

Author details

  1. Pablo Ripollés

    Department of Psychology, New York University, New York, United States
    For correspondence
    pabloripollesvidal@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8463-3723
  2. Laura Ferreri

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ernest Mas-Herrero

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Helena Alicart

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Alba Gómez-Andrés

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Josep Marco-Pallares

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Rosa Maria Antonijoan

    Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Toemme Noesselt

    Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
    For correspondence
    toemme@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9611-9713
  9. Marta Valle

    Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Jordi Riba

    Human Neuropsychopharmacology Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Antoni Rodriguez-Fornells

    Cognition and Brain Plasticity Group, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
    For correspondence
    antoni.rodriguez@icrea.cat
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Industria, Economía y Competitividad (PSI2011-29219)

  • Antoni Rodriguez-Fornells

Ministerio de Industria, Economía y Competitividad (AP2010-4179)

  • Pablo Ripollés

Morelly-Rotary Postdoctoral Fellowship

  • Laura Ferreri

Ministerio de Sanidad, Servicios Sociales e Igualdad (CP04/00 121)

  • Marta Valle

Deutsche Forschungsgemeinschaft (DFG-SFB-779/A15)

  • Toemme Noesselt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was performed according to local ethics and to the Declaration of Helsinki. It was approved by the Ethics Committee of Hospital Sant Pau and by the Spanish Medicines and Medical Devices Agency (EudraCT 2016-000801-35). All participants gave informed written consent and received compensation for their participation in the study according to Spanish legislation.

Copyright

© 2018, Ripollés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,511
    views
  • 360
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pablo Ripollés
  2. Laura Ferreri
  3. Ernest Mas-Herrero
  4. Helena Alicart
  5. Alba Gómez-Andrés
  6. Josep Marco-Pallares
  7. Rosa Maria Antonijoan
  8. Toemme Noesselt
  9. Marta Valle
  10. Jordi Riba
  11. Antoni Rodriguez-Fornells
(2018)
Intrinsically regulated learning is modulated by synaptic dopamine signaling
eLife 7:e38113.
https://doi.org/10.7554/eLife.38113

Share this article

https://doi.org/10.7554/eLife.38113

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ev L Nichols, Joo Lee, Kang Shen
    Research Article

    During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon’s route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.