Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray Syndrome

  1. Katherine A Donovan
  2. Jian An
  3. Radoslaw P Nowak
  4. Jingting C Yuan
  5. Emma C Fink
  6. Bethany C Berry
  7. Benjamin L Ebert
  8. Eric S Fischer  Is a corresponding author
  1. Dana-Farber Cancer Institute, United States
  2. Brigham and Women's Hospital, United States

Abstract

Frequently used to treat morning sickness, the drug thalidomide led to the birth of thousands of children with severe birth defects. Despite their teratogenicity, thalidomide and related IMiD drugs are now a mainstay of cancer treatment, however, the molecular basis underlying the pleiotropic biology and characteristic birth defects remains unknown. Here we show that IMiDs disrupt a broad transcriptional network through induced degradation of several C2H2 zinc finger transcription factors, including SALL4, a member of the spalt-like family of developmental transcription factors. Strikingly, heterozygous loss of function mutations in SALL4 result in a human developmental condition that phenocopies thalidomide induced birth defects such as absence of thumbs, phocomelia, defects in ear and eye development, and congenital heart disease. We find that thalidomide induces degradation of SALL4 exclusively in humans, primates and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidomide syndrome.

Data availability

All mass spectrometry raw data is deposited and made available via the PRIDE archive under accessions: PXD010416, PXD010417, PXD010418, PXD010420, PDX010428. Source files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. Katherine A Donovan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  2. Jian An

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  3. Radoslaw P Nowak

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jingting C Yuan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  5. Emma C Fink

    Division of Hematology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6589-8558
  6. Bethany C Berry

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Benjamin L Ebert

    Division of Hematology, Brigham and Women's Hospital, Boston, MA, United States
    Competing interests
    No competing interests declared.
  8. Eric S Fischer

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    eric_fischer@dfci.harvard.edu
    Competing interests
    Eric S Fischer, is a member of the scientific advisory board of C4 Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-6306

Funding

National Cancer Institute (R01CA214608)

  • Katherine A Donovan
  • Radoslaw P Nowak
  • Eric S Fischer

Damon Runyon Cancer Research Foundation (DRR-50-18)

  • Eric S Fischer

Novartis

  • Katherine A Donovan
  • Bethany C Berry
  • Eric S Fischer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Rape, University of California, Berkeley, United States

Version history

  1. Received: May 16, 2018
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: August 1, 2018 (version 1)
  4. Version of Record published: September 25, 2018 (version 2)

Copyright

© 2018, Donovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 29,182
    Page views
  • 4,806
    Downloads
  • 274
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine A Donovan
  2. Jian An
  3. Radoslaw P Nowak
  4. Jingting C Yuan
  5. Emma C Fink
  6. Bethany C Berry
  7. Benjamin L Ebert
  8. Eric S Fischer
(2018)
Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray Syndrome
eLife 7:e38430.
https://doi.org/10.7554/eLife.38430

Share this article

https://doi.org/10.7554/eLife.38430

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristian Davidsen, Jonathan S Marvin ... Lucas B Sullivan
    Research Article

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

    1. Biochemistry and Chemical Biology
    Chi-Ning Chuang, Hou-Cheng Liu ... Ting-Fang Wang
    Research Article

    Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.