Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray Syndrome

  1. Katherine A Donovan
  2. Jian An
  3. Radoslaw P Nowak
  4. Jingting C Yuan
  5. Emma C Fink
  6. Bethany C Berry
  7. Benjamin L Ebert
  8. Eric S Fischer  Is a corresponding author
  1. Dana-Farber Cancer Institute, United States
  2. Brigham and Women's Hospital, United States

Abstract

Frequently used to treat morning sickness, the drug thalidomide led to the birth of thousands of children with severe birth defects. Despite their teratogenicity, thalidomide and related IMiD drugs are now a mainstay of cancer treatment, however, the molecular basis underlying the pleiotropic biology and characteristic birth defects remains unknown. Here we show that IMiDs disrupt a broad transcriptional network through induced degradation of several C2H2 zinc finger transcription factors, including SALL4, a member of the spalt-like family of developmental transcription factors. Strikingly, heterozygous loss of function mutations in SALL4 result in a human developmental condition that phenocopies thalidomide induced birth defects such as absence of thumbs, phocomelia, defects in ear and eye development, and congenital heart disease. We find that thalidomide induces degradation of SALL4 exclusively in humans, primates and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidomide syndrome.

Data availability

All mass spectrometry raw data is deposited and made available via the PRIDE archive under accessions: PXD010416, PXD010417, PXD010418, PXD010420, PDX010428. Source files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. Katherine A Donovan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  2. Jian An

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  3. Radoslaw P Nowak

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jingting C Yuan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  5. Emma C Fink

    Division of Hematology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6589-8558
  6. Bethany C Berry

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Benjamin L Ebert

    Division of Hematology, Brigham and Women's Hospital, Boston, MA, United States
    Competing interests
    No competing interests declared.
  8. Eric S Fischer

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    eric_fischer@dfci.harvard.edu
    Competing interests
    Eric S Fischer, is a member of the scientific advisory board of C4 Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7337-6306

Funding

National Cancer Institute (R01CA214608)

  • Katherine A Donovan
  • Radoslaw P Nowak
  • Eric S Fischer

Damon Runyon Cancer Research Foundation (DRR-50-18)

  • Eric S Fischer

Novartis

  • Katherine A Donovan
  • Bethany C Berry
  • Eric S Fischer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Rape, University of California, Berkeley, United States

Version history

  1. Received: May 16, 2018
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: August 1, 2018 (version 1)
  4. Version of Record published: September 25, 2018 (version 2)

Copyright

© 2018, Donovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 30,243
    views
  • 4,965
    downloads
  • 326
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine A Donovan
  2. Jian An
  3. Radoslaw P Nowak
  4. Jingting C Yuan
  5. Emma C Fink
  6. Bethany C Berry
  7. Benjamin L Ebert
  8. Eric S Fischer
(2018)
Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray Syndrome
eLife 7:e38430.
https://doi.org/10.7554/eLife.38430

Share this article

https://doi.org/10.7554/eLife.38430

Further reading

    1. Biochemistry and Chemical Biology
    Hao Wang, Chen Ye ... Yan Li
    Research Article

    Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3′→5′ exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5′-bond of phosphodiester from 3′ to 5′ end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3′-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Xiaolin Yu, Guangfei Duan ... Shi-Zhong Luo
    Research Article

    Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid–liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.