Current and future goals are represented in opposite patterns in object-selective cortex

Abstract

Adaptive behavior requires the separation of current from future goals in working memory. We used fMRI of object-selective cortex to determine the representational (dis)similarities of memory representations serving current and prospective perceptual tasks. Participants remembered an object drawn from three possible categories as the target for one of two consecutive visual search tasks. A cue indicated whether the target object should be looked for first (currently relevant), second (prospectively relevant), or if it could be forgotten (irrelevant). Prior to the first search, representations of current, prospective and irrelevant objects were similar, with strongest decoding for current representations compared to prospective (Experiment 1) and irrelevant (Experiment 2). Remarkably, during the first search, prospective representations could also be decoded, but revealed anti-correlated voxel patterns compared to currently relevant representations of the same category. We propose that the brain separates current from prospective memories within the same neuronal ensembles through opposite representational patterns.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files and source code files have been provided for Figures 2,3,4, 5, S1,S2,S3 and the fMRI data is made available via the open science framework:""Current and Future Goals Are Represented in Opposite Patterns in Object-Selective Cortex."" Open Science Framework. May 31. osf.io/hcp47.For the newly added experiment 2, the data and scripts have also been provided.

The following data sets were generated

Article and author information

Author details

  1. Anouk Mariette van Loon

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    anouk.vanloon@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9015-7647
  2. Katya Olmos-Solis

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Johannes Jacobus Fahrenfort

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9025-3436
  4. Christian N L Olivers

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    c.n.l.olivers@vu.nl
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (615423)

  • Christian N L Olivers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: Twenty-four healthy volunteers participated in Experiment 1 and twenty-five healthy volunteers participated in Experiment 2. The experiment was approved by the Ethical Committee of the Faculty of Social and Behavioral Sciences, University of Amsterdam and conformed to the Declaration of Helsinki. All subjects provided written informed consent and consent to publish.

Reviewing Editor

  1. Floris de Lange, Donders Institute for Brain, Cognition and Behaviour, Netherlands

Publication history

  1. Received: May 25, 2018
  2. Accepted: October 31, 2018
  3. Accepted Manuscript published: November 5, 2018 (version 1)
  4. Accepted Manuscript updated: November 6, 2018 (version 2)
  5. Version of Record published: December 4, 2018 (version 3)

Copyright

© 2018, van Loon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,462
    Page views
  • 402
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anouk Mariette van Loon
  2. Katya Olmos-Solis
  3. Johannes Jacobus Fahrenfort
  4. Christian N L Olivers
(2018)
Current and future goals are represented in opposite patterns in object-selective cortex
eLife 7:e38677.
https://doi.org/10.7554/eLife.38677

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Hossein Shahabi, Dileep R Nair, Richard M Leahy
    Research Article Updated

    Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80–200Hz) for the identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the EZ as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in the early to mid-seizure. We showed that aging and the duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but possible factors that correlate with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we demonstrate the necessity of collecting sufficient data for identifying epileptogenic networks.

    1. Neuroscience
    Yonatan Sanz Perl, Sol Fittipaldi ... Enzo Tagliazucchi
    Research Article

    The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.