1. Chromosomes and Gene Expression
Download icon

Multi-protein Bridging Factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting

  1. Jiyu Wang
  2. Jie Zhou
  3. Qidi Yang
  4. Elizabeth J Grayhack  Is a corresponding author
  1. University of Rochester, United States
Research Article
  • Cited 0
  • Views 355
  • Annotations
Cite this article as: eLife 2018;7:e39637 doi: 10.7554/eLife.39637

Abstract

Reading frame maintenance is critical for accurate translation. We show that the conserved eukaryotic/archaeal protein Mbf1 acts with ribosomal proteins Rps3/uS3 and eukaryotic Asc1/RACK1 to prevent frameshifting at inhibitory CGA-CGA codon pairs in the yeast Saccharomyces cerevisiae. Mutations in RPS3 that allow frameshifting implicate eukaryotic conserved residues near the mRNA entry site. Mbf1 and Rps3 cooperate to maintain the reading frame of stalled ribosomes, while Asc1 also mediates distinct events that result in recruitment of the ribosome quality control complex and mRNA decay. Frameshifting occurs through a +1 shift with a CGA codon in the P site and involves competition between codons entering the A site, implying that the wobble interaction of the P site codon destabilizes translation elongation. Thus, eukaryotes have evolved unique mechanisms involving both a universally conserved ribosome component and two eukaryotic-specific proteins to maintain the reading frame at ribosome stalls.

Article and author information

Author details

  1. Jiyu Wang

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1283-2934
  2. Jie Zhou

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qidi Yang

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elizabeth J Grayhack

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    For correspondence
    elizabeth_grayhack@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2400-5490

Funding

NIH Office of the Director (R01 GM118386)

  • Elizabeth J Grayhack

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rachel Green, Johns Hopkins School of Medicine, United States

Publication history

  1. Received: June 28, 2018
  2. Accepted: November 21, 2018
  3. Accepted Manuscript published: November 22, 2018 (version 1)

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 355
    Page views
  • 125
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Elisabeth R Knoll et al.
    Research Article
    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Andrew N Holding et al.
    Short Report Updated