A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast

Abstract

Replicative aging of Saccharomyces cerevisiae is an established model system for eukaryotic cellular aging. A limitation in yeast lifespan studies has been the difficulty of separating old cells from young cells in large quantities. We engineered a new platform, the Miniature-chemostat Aging Device (MAD), that enables purification of aged cells at sufficient quantities for genomic and biochemical characterization of aging yeast populations. Using MAD, we measured DNA accessibility and gene expression changes in aging cells. Our data highlight an intimate connection between aging, growth rate, and stress. Stress-independent genes that change with age are highly enriched for targets of the signal recognition particle (SRP). Combining MAD with an improved ATAC-Seq method, we find that increasing proteasome activity reduces rDNA instability usually observed in aging cells, and contrary to published findings, provide evidence that global nucleosome occupancy does not change significantly with age.

Data availability

We've included all processed data in easily accessible tables.Sequencing data have been deposited in GEO under accession codes GSE118581

The following data sets were generated
    1. Hendrickson DG
    2. Soifer I
    (2018) Genomic analysis of aging yeast
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE118581).

Article and author information

Author details

  1. David G Hendrickson

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    David G Hendrickson, Is affiliated with Calico Life Sciences. There are no other competing interests.
  2. Ilya Soifer

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Ilya Soifer, Is affiliated with Calico Life Sciences. There are no other competing interests.
  3. Bernd J Wranik

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Bernd J Wranik, Is affiliated with Calico Life Sciences. There are no other competing interests.
  4. Griffin Kim

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Griffin Kim, Is affiliated with Calico Life Sciences. There are no other competing interests.
  5. Michael Robles

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Michael Robles, Is affiliated with Calico Life Sciences. There are no other competing interests.
  6. Patrick A Gibney

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Patrick A Gibney, Is affiliated with Calico Life Sciences. There are no other competing interests.
  7. R Scott McIsaac

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    rsm@calicolabs.com
    Competing interests
    R Scott McIsaac, Is affiliated with Calico Life Sciences. There are no other competing interests.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5339-6032

Funding

The authors declare that there was no funding for this work.

Copyright

© 2018, Hendrickson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,000
    views
  • 1,344
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David G Hendrickson
  2. Ilya Soifer
  3. Bernd J Wranik
  4. Griffin Kim
  5. Michael Robles
  6. Patrick A Gibney
  7. R Scott McIsaac
(2018)
A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast
eLife 7:e39911.
https://doi.org/10.7554/eLife.39911

Share this article

https://doi.org/10.7554/eLife.39911

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.