A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast

Abstract

Replicative aging of Saccharomyces cerevisiae is an established model system for eukaryotic cellular aging. A limitation in yeast lifespan studies has been the difficulty of separating old cells from young cells in large quantities. We engineered a new platform, the Miniature-chemostat Aging Device (MAD), that enables purification of aged cells at sufficient quantities for genomic and biochemical characterization of aging yeast populations. Using MAD, we measured DNA accessibility and gene expression changes in aging cells. Our data highlight an intimate connection between aging, growth rate, and stress. Stress-independent genes that change with age are highly enriched for targets of the signal recognition particle (SRP). Combining MAD with an improved ATAC-Seq method, we find that increasing proteasome activity reduces rDNA instability usually observed in aging cells, and contrary to published findings, provide evidence that global nucleosome occupancy does not change significantly with age.

Data availability

We've included all processed data in easily accessible tables.Sequencing data have been deposited in GEO under accession codes GSE118581

The following data sets were generated
    1. Hendrickson DG
    2. Soifer I
    (2018) Genomic analysis of aging yeast
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE118581).

Article and author information

Author details

  1. David G Hendrickson

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    David G Hendrickson, Is affiliated with Calico Life Sciences. There are no other competing interests.
  2. Ilya Soifer

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Ilya Soifer, Is affiliated with Calico Life Sciences. There are no other competing interests.
  3. Bernd J Wranik

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Bernd J Wranik, Is affiliated with Calico Life Sciences. There are no other competing interests.
  4. Griffin Kim

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Griffin Kim, Is affiliated with Calico Life Sciences. There are no other competing interests.
  5. Michael Robles

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Michael Robles, Is affiliated with Calico Life Sciences. There are no other competing interests.
  6. Patrick A Gibney

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Patrick A Gibney, Is affiliated with Calico Life Sciences. There are no other competing interests.
  7. R Scott McIsaac

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    rsm@calicolabs.com
    Competing interests
    R Scott McIsaac, Is affiliated with Calico Life Sciences. There are no other competing interests.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5339-6032

Funding

The authors declare that there was no funding for this work.

Copyright

© 2018, Hendrickson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,136
    views
  • 1,361
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David G Hendrickson
  2. Ilya Soifer
  3. Bernd J Wranik
  4. Griffin Kim
  5. Michael Robles
  6. Patrick A Gibney
  7. R Scott McIsaac
(2018)
A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast
eLife 7:e39911.
https://doi.org/10.7554/eLife.39911

Share this article

https://doi.org/10.7554/eLife.39911

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.