Evolutionary pathways of repeat protein topology in bacterial outer membrane proteins

  1. Meghan Whitney Franklin
  2. Sergey Nepomnyachyi
  3. Ryan Feehan
  4. Nir Ben-Tal
  5. Rachel Kolodny
  6. Joanna SG Slusky  Is a corresponding author
  1. University of Kansas, United States
  2. Tel Aviv University, Israel
  3. University of Haifa, Israel

Abstract

Outer membrane proteins (OMPs) are the proteins in the surface of Gram-negative bacteria. These proteins have diverse functions but a single topology: the β-barrel. Sequence analysis has suggested that this common fold is a β-hairpin repeat protein, and that amplification of the β-hairpin has resulted in 8-26-stranded barrels. Using an integrated approach that combines sequence and structural analyses we find events in which non-amplification diversification also increases barrel strand number. Our network-based analysis reveals strand-number evolutionary pathways, including one that progresses from a primordial 8-stranded barrel to 16-strands and further, to 18-strands. Among these are mechanisms of strand number accretion without domain duplication, like a loop-to-hairpin transition. These mechanisms illustrate perpetuation of repeat protein topology without genetic duplication, likely induced by the hydrophobic membrane. Finally, we find that the evolutionary trace is particularly prominent in the C-terminal half of OMPs, implicating this region in the nucleation of OMP folding.

Data availability

All data generated is available on the website http:// cytostruct.info /rachel/protos/index.html. Summary files of the results are included in the supplement. Software is available on github https://github.com/SluskyLab/PolarBearal.git as are the a3m files https://github.com/SluskyLab/OMBB_A3Mfiles.git

The following previously published data sets were used

Article and author information

Author details

  1. Meghan Whitney Franklin

    Center for Computational Biology, University of Kansas, Lawrence, United States
    Competing interests
    No competing interests declared.
  2. Sergey Nepomnyachyi

    Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    No competing interests declared.
  3. Ryan Feehan

    Center for Computational Biology, University of Kansas, Lawrence, United States
    Competing interests
    No competing interests declared.
  4. Nir Ben-Tal

    Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    Nir Ben-Tal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6901-832X
  5. Rachel Kolodny

    Department of Computer Science, University of Haifa, Haifa, Israel
    Competing interests
    No competing interests declared.
  6. Joanna SG Slusky

    Center for Computational Biology, University of Kansas, Lawrence, United States
    For correspondence
    slusky@ku.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0842-6340

Funding

National Institute of General Medical Sciences (DP2GM128201)

  • Meghan Whitney Franklin
  • Joanna SG Slusky

Gordon and Betty Moore Foundation (Moore Inventor Fellowship)

  • Joanna SG Slusky

National Science Foundation (MCB160205)

  • Joanna SG Slusky

Israel Science Foundation (450/16)

  • Nir Ben-Tal
  • Rachel Kolodny

National Institute of General Medical Sciences (P20GM103418)

  • Meghan Whitney Franklin
  • Joanna SG Slusky

National Institute of General Medical Sciences (P20GM113117)

  • Meghan Whitney Franklin
  • Joanna SG Slusky

National Institute of General Medical Sciences (T32-GM008359)

  • Meghan Whitney Franklin
  • Joanna SG Slusky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vikas Nanda, Rutgers University, United States

Version history

  1. Received: July 20, 2018
  2. Accepted: November 28, 2018
  3. Accepted Manuscript published: November 29, 2018 (version 1)
  4. Version of Record published: January 21, 2019 (version 2)

Copyright

© 2018, Franklin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,518
    views
  • 393
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meghan Whitney Franklin
  2. Sergey Nepomnyachyi
  3. Ryan Feehan
  4. Nir Ben-Tal
  5. Rachel Kolodny
  6. Joanna SG Slusky
(2018)
Evolutionary pathways of repeat protein topology in bacterial outer membrane proteins
eLife 7:e40308.
https://doi.org/10.7554/eLife.40308

Share this article

https://doi.org/10.7554/eLife.40308

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.