A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation

  1. Linton M Traub  Is a corresponding author
  1. University of Pittsburgh School of Medicine, United States

Abstract

Besides AP-2 and clathrin triskelia, clathrin coat inception depends on a group of early-arriving proteins including Fcho1/2 and Eps15/R. Using genome-edited cells, we described the role of the unstructured Fcho linker in stable AP-2 membrane deposition. Here, expanding this strategy in combination with a new set of llama nanobodies against EPS15 shows an FCHO1/2–EPS15/R partnership plays a decisive role in coat initiation. A nanobody containing an Asn-Pro-Phe peptide within the complementarity determining region 3 loop is a function-blocking pseudoligand for tandem EPS15/R EH domains. Yet, in living cells, EH domains gathered at clathrin-coated structures are poorly accessible, indicating residence by endogenous NPF-bearing partners. Forcibly sequestering cytosolic EPS15 in genome-edited cells with nanobodies tethered to early endosomes or mitochondria changes the subcellular location and availability of EPS15. This combined approach has strong effects on clathrin coat structure and function by dictating the stability of AP-2 assemblies at the plasma membrane.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Key plasmids will be made available via Addgene.

Article and author information

Author details

  1. Linton M Traub

    Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    For correspondence
    traub@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1303-0298

Funding

National Institute of General Medical Sciences (R01GM106963)

  • Linton M Traub

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Traub

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,312
    views
  • 533
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linton M Traub
(2019)
A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation
eLife 8:e41768.
https://doi.org/10.7554/eLife.41768

Share this article

https://doi.org/10.7554/eLife.41768

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lena Kallweit, Eric Daniel Hamlett ... Scott Horowitz
    Research Article

    As the world population ages, new molecular targets in aging and Alzheimer’s disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with the accumulation of phospho-tau immunostaining contained rG4s, rG4 structure can drive tau aggregation, and rG4 staining density depended on APOE genotype in the human tissue examined. Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation is linked to proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.