Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase

  1. Jeremy G Bird
  2. Urmimala Basu
  3. David Kuster
  4. Aparna Ramachandran
  5. Ewa Grudzien-Nogalska
  6. Atif Towheed
  7. Douglas C Wallace
  8. Megerditch Kiledjian
  9. Dmitry Temiakov
  10. Smita S Patel  Is a corresponding author
  11. Richard H Ebright  Is a corresponding author
  12. Bryce E Nickels  Is a corresponding author
  1. Rutgers University, United States
  2. Heidelberg University, Germany
  3. The Children's Hospital of Philadelphia, United States
  4. University of Pennsylvania, United States
  5. Rowan University, United States

Abstract

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non‑canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Jeremy G Bird

    Department of Genetics, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Urmimala Basu

    Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Kuster

    Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8157-9223
  4. Aparna Ramachandran

    Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ewa Grudzien-Nogalska

    Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Atif Towheed

    Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Douglas C Wallace

    Center for Mitochondrial and Epigenomic Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Megerditch Kiledjian

    Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dmitry Temiakov

    Department of Cell Biology, Rowan University, Glassboro, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Smita S Patel

    Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, United States
    For correspondence
    patelss@rwjms.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard H Ebright

    Department of Chemistry, Rutgers University, Piscataway, United States
    For correspondence
    ebright@waksman.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8915-7140
  12. Bryce E Nickels

    Department of Genetics, Rutgers University, Piscataway, United States
    For correspondence
    bnickels@waksman.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7449-8831

Funding

National Institutes of Health (GM126488)

  • Megerditch Kiledjian

American Heart Association (16PRE30400001)

  • Urmimala Basu

National Institutes of Health (GM118086)

  • Smita S Patel

National Institutes of Health (GM104231)

  • Dmitry Temiakov

National Institutes of Health (GM041376)

  • Richard H Ebright

National Institutes of Health (GM118059)

  • Bryce E Nickels

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Bird et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,157
    views
  • 736
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy G Bird
  2. Urmimala Basu
  3. David Kuster
  4. Aparna Ramachandran
  5. Ewa Grudzien-Nogalska
  6. Atif Towheed
  7. Douglas C Wallace
  8. Megerditch Kiledjian
  9. Dmitry Temiakov
  10. Smita S Patel
  11. Richard H Ebright
  12. Bryce E Nickels
(2018)
Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase
eLife 7:e42179.
https://doi.org/10.7554/eLife.42179

Share this article

https://doi.org/10.7554/eLife.42179

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.