Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis

  1. Jinsheng Zhu
  2. Kelvin Lau
  3. Robert Puschmann
  4. Robert K Harmel
  5. Youjun Zhang
  6. Verena Pries
  7. Philipp Gaugler
  8. Larissa Broger
  9. Amit K Dutta
  10. Henning J Jessen
  11. Gabriel Schaaf
  12. Alisdair R Fernie
  13. Ludwig A Hothorn
  14. Dorothea Fiedler
  15. Michael Hothorn  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  3. Max-Planck Institute of Molecular Plant Physiology, Germany
  4. University of Bonn, Germany
  5. Albert-Ludwigs-Universität Freiburg, Germany
  6. Max-Planck Institute for Molecular Plant Physiology, Germany
  7. Leibniz University, Germany

Abstract

Many eukaryotic proteins regulating phosphate (Pi) homeostasis contain SPX domains that are receptors for inositol pyrophosphates (PP-InsP), suggesting that PP-InsPs may regulate Pi homeostasis. Here we report that deletion of two diphosphoinositol pentakisphosphate kinases VIH1/2 impairs plant growth and leads to constitutive Pi starvation responses. Deletion of phosphate starvation response transcription factors partially rescues vih1 vih2 mutant phenotypes, placing diphosphoinositol pentakisphosphate kinases in plant Pi signal transduction cascades. VIH1/2 are bifunctional enzymes able to generate and break-down PP-InsPs. Mutations in the kinase active site lead to increased Pi levels and constitutive Pi starvation responses. ATP levels change significantly in different Pi growth conditions. ATP-Mg2+ concentrations shift the relative kinase and phosphatase activities of diphosphoinositol pentakisphosphate kinases in vitro. Pi inhibits the phosphatase activity of the enzyme. Thus, VIH1 and VIH2 relay changes in cellular ATP and Pi concentrations to changes in PP-InsP levels, allowing plants to maintain sufficient Pi levels.

Data availability

Pi measurements: raw data included in actual figurePhenotypes: representative lines shown in main figures, at least three independent lines shown in figure supplementsWestern blots: full western blots shown in figure supplementsProtein gels: Full gels shown in figure 5 supplement 1 and figure 6 supplement 1DNA sequences of the truncated VIH2 transcript is in figure 2 supplement 1NMR data: full 1D and 2D spectra shown in figure 5 and figure 5 supplement 2, figure 6 supplement 2

Article and author information

Author details

  1. Jinsheng Zhu

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8131-1876
  2. Kelvin Lau

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Puschmann

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6443-2326
  4. Robert K Harmel

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Youjun Zhang

    Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Verena Pries

    Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Philipp Gaugler

    Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Larissa Broger

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Amit K Dutta

    Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Henning J Jessen

    Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Gabriel Schaaf

    Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Alisdair R Fernie

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Ludwig A Hothorn

    Institute of Biostatistics, Leibniz University, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Dorothea Fiedler

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael Hothorn

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    For correspondence
    michael.hothorn@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3597-5698

Funding

H2020 European Research Council (310856)

  • Michael Hothorn

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII5_170925)

  • Dorothea Fiedler
  • Michael Hothorn

Howard Hughes Medical Institute (55008733)

  • Michael Hothorn

European Molecular Biology Organization (ALTF 493-2015)

  • Kelvin Lau

Leibniz-Gemeinschaft (SAW-2017-FMP-1)

  • Dorothea Fiedler

Deutsche Forschungsgemeinschaft (SCHA 1274/4-1)

  • Gabriel Schaaf

Max-Planck-Gesellschaft

  • Youjun Zhang
  • Alisdair R Fernie

Horizon 2020 Framework Programme (PlantaSYST)

  • Youjun Zhang
  • Alisdair R Fernie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jürgen Kleine-Vehn, University of Natural Resources and Life Sciences, Austria

Version history

  1. Received: November 12, 2018
  2. Accepted: August 21, 2019
  3. Accepted Manuscript published: August 22, 2019 (version 1)
  4. Version of Record published: September 6, 2019 (version 2)

Copyright

© 2019, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,540
    views
  • 911
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jinsheng Zhu
  2. Kelvin Lau
  3. Robert Puschmann
  4. Robert K Harmel
  5. Youjun Zhang
  6. Verena Pries
  7. Philipp Gaugler
  8. Larissa Broger
  9. Amit K Dutta
  10. Henning J Jessen
  11. Gabriel Schaaf
  12. Alisdair R Fernie
  13. Ludwig A Hothorn
  14. Dorothea Fiedler
  15. Michael Hothorn
(2019)
Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis
eLife 8:e43582.
https://doi.org/10.7554/eLife.43582

Share this article

https://doi.org/10.7554/eLife.43582

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.