Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis

  1. Jinsheng Zhu
  2. Kelvin Lau
  3. Robert Puschmann
  4. Robert K Harmel
  5. Youjun Zhang
  6. Verena Pries
  7. Philipp Gaugler
  8. Larissa Broger
  9. Amit K Dutta
  10. Henning J Jessen
  11. Gabriel Schaaf
  12. Alisdair R Fernie
  13. Ludwig A Hothorn
  14. Dorothea Fiedler
  15. Michael Hothorn  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  3. Max-Planck Institute of Molecular Plant Physiology, Germany
  4. University of Bonn, Germany
  5. Albert-Ludwigs-Universität Freiburg, Germany
  6. Max-Planck Institute for Molecular Plant Physiology, Germany
  7. Leibniz University, Germany

Abstract

Many eukaryotic proteins regulating phosphate (Pi) homeostasis contain SPX domains that are receptors for inositol pyrophosphates (PP-InsP), suggesting that PP-InsPs may regulate Pi homeostasis. Here we report that deletion of two diphosphoinositol pentakisphosphate kinases VIH1/2 impairs plant growth and leads to constitutive Pi starvation responses. Deletion of phosphate starvation response transcription factors partially rescues vih1 vih2 mutant phenotypes, placing diphosphoinositol pentakisphosphate kinases in plant Pi signal transduction cascades. VIH1/2 are bifunctional enzymes able to generate and break-down PP-InsPs. Mutations in the kinase active site lead to increased Pi levels and constitutive Pi starvation responses. ATP levels change significantly in different Pi growth conditions. ATP-Mg2+ concentrations shift the relative kinase and phosphatase activities of diphosphoinositol pentakisphosphate kinases in vitro. Pi inhibits the phosphatase activity of the enzyme. Thus, VIH1 and VIH2 relay changes in cellular ATP and Pi concentrations to changes in PP-InsP levels, allowing plants to maintain sufficient Pi levels.

Data availability

Pi measurements: raw data included in actual figurePhenotypes: representative lines shown in main figures, at least three independent lines shown in figure supplementsWestern blots: full western blots shown in figure supplementsProtein gels: Full gels shown in figure 5 supplement 1 and figure 6 supplement 1DNA sequences of the truncated VIH2 transcript is in figure 2 supplement 1NMR data: full 1D and 2D spectra shown in figure 5 and figure 5 supplement 2, figure 6 supplement 2

Article and author information

Author details

  1. Jinsheng Zhu

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8131-1876
  2. Kelvin Lau

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Puschmann

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6443-2326
  4. Robert K Harmel

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Youjun Zhang

    Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Verena Pries

    Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Philipp Gaugler

    Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Larissa Broger

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Amit K Dutta

    Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Henning J Jessen

    Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Gabriel Schaaf

    Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Alisdair R Fernie

    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Ludwig A Hothorn

    Institute of Biostatistics, Leibniz University, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Dorothea Fiedler

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael Hothorn

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    For correspondence
    michael.hothorn@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3597-5698

Funding

H2020 European Research Council (310856)

  • Michael Hothorn

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII5_170925)

  • Dorothea Fiedler
  • Michael Hothorn

Howard Hughes Medical Institute (55008733)

  • Michael Hothorn

European Molecular Biology Organization (ALTF 493-2015)

  • Kelvin Lau

Leibniz-Gemeinschaft (SAW-2017-FMP-1)

  • Dorothea Fiedler

Deutsche Forschungsgemeinschaft (SCHA 1274/4-1)

  • Gabriel Schaaf

Max-Planck-Gesellschaft

  • Youjun Zhang
  • Alisdair R Fernie

Horizon 2020 Framework Programme (PlantaSYST)

  • Youjun Zhang
  • Alisdair R Fernie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jürgen Kleine-Vehn, University of Natural Resources and Life Sciences, Austria

Publication history

  1. Received: November 12, 2018
  2. Accepted: August 21, 2019
  3. Accepted Manuscript published: August 22, 2019 (version 1)
  4. Version of Record published: September 6, 2019 (version 2)

Copyright

© 2019, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,705
    Page views
  • 800
    Downloads
  • 72
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jinsheng Zhu
  2. Kelvin Lau
  3. Robert Puschmann
  4. Robert K Harmel
  5. Youjun Zhang
  6. Verena Pries
  7. Philipp Gaugler
  8. Larissa Broger
  9. Amit K Dutta
  10. Henning J Jessen
  11. Gabriel Schaaf
  12. Alisdair R Fernie
  13. Ludwig A Hothorn
  14. Dorothea Fiedler
  15. Michael Hothorn
(2019)
Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis
eLife 8:e43582.
https://doi.org/10.7554/eLife.43582

Further reading

    1. Biochemistry and Chemical Biology
    Allyson Li, Rashmi Voleti ... Neel H Shah
    Tools and Resources Updated

    Tyrosine kinases and SH2 (phosphotyrosine recognition) domains have binding specificities that depend on the amino acid sequence surrounding the target (phospho)tyrosine residue. Although the preferred recognition motifs of many kinases and SH2 domains are known, we lack a quantitative description of sequence specificity that could guide predictions about signaling pathways or be used to design sequences for biomedical applications. Here, we present a platform that combines genetically encoded peptide libraries and deep sequencing to profile sequence recognition by tyrosine kinases and SH2 domains. We screened several tyrosine kinases against a million-peptide random library and used the resulting profiles to design high-activity sequences. We also screened several kinases against a library containing thousands of human proteome-derived peptides and their naturally-occurring variants. These screens recapitulated independently measured phosphorylation rates and revealed hundreds of phosphosite-proximal mutations that impact phosphosite recognition by tyrosine kinases. We extended this platform to the analysis of SH2 domains and showed that screens could predict relative binding affinities. Finally, we expanded our method to assess the impact of non-canonical and post-translationally modified amino acids on sequence recognition. This specificity profiling platform will shed new light on phosphotyrosine signaling and could readily be adapted to other protein modification/recognition domains.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sean M Braet, Theresa SC Buckley ... Ganesh S Anand
    Research Article Updated

    SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.