Engineering a conserved RNA regulatory protein repurposes its biological function in vivo

  1. Vandita D Bhat
  2. Kathleen L McCann
  3. Yeming Wang
  4. Dallas R Fonseca
  5. Tarjani Shukla
  6. Jacqueline C Alexander
  7. Chen Qiu
  8. Marvin Wickens
  9. Te-Wen Lo
  10. Traci M Tanaka Hall  Is a corresponding author
  11. Zachary T Campbell  Is a corresponding author
  1. University of Texas Dallas, United States
  2. National Institute of Environmental Health Sciences, National Institutes of Health, United States
  3. Ithaca College, United States
  4. University of Wisconsin-Madison, United States

Abstract

PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.

Data availability

All data associated with the manuscript are present in the source data file. Data have also been deposited to PDB under the accession numbers 6NOD, 6NOH, 6NOF, and 6NOC.

The following data sets were generated

Article and author information

Author details

  1. Vandita D Bhat

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kathleen L McCann

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7144-4851
  3. Yeming Wang

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dallas R Fonseca

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tarjani Shukla

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacqueline C Alexander

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Qiu

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marvin Wickens

    Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Te-Wen Lo

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Traci M Tanaka Hall

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    For correspondence
    hall4@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-3009
  11. Zachary T Campbell

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    For correspondence
    zachary.campbell@utdallas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3768-6996

Funding

National Institutes of Health (R01NS100788)

  • Zachary T Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,395
    views
  • 310
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vandita D Bhat
  2. Kathleen L McCann
  3. Yeming Wang
  4. Dallas R Fonseca
  5. Tarjani Shukla
  6. Jacqueline C Alexander
  7. Chen Qiu
  8. Marvin Wickens
  9. Te-Wen Lo
  10. Traci M Tanaka Hall
  11. Zachary T Campbell
(2019)
Engineering a conserved RNA regulatory protein repurposes its biological function in vivo
eLife 8:e43788.
https://doi.org/10.7554/eLife.43788

Share this article

https://doi.org/10.7554/eLife.43788

Further reading

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.