Engineering a conserved RNA regulatory protein repurposes its biological function in vivo

  1. Vandita D Bhat
  2. Kathleen L McCann
  3. Yeming Wang
  4. Dallas R Fonseca
  5. Tarjani Shukla
  6. Jacqueline C Alexander
  7. Chen Qiu
  8. Marvin Wickens
  9. Te-Wen Lo
  10. Traci M Tanaka Hall  Is a corresponding author
  11. Zachary T Campbell  Is a corresponding author
  1. University of Texas Dallas, United States
  2. National Institute of Environmental Health Sciences, National Institutes of Health, United States
  3. Ithaca College, United States
  4. University of Wisconsin-Madison, United States

Abstract

PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.

Data availability

All data associated with the manuscript are present in the source data file. Data have also been deposited to PDB under the accession numbers 6NOD, 6NOH, 6NOF, and 6NOC.

The following data sets were generated

Article and author information

Author details

  1. Vandita D Bhat

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kathleen L McCann

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7144-4851
  3. Yeming Wang

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dallas R Fonseca

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tarjani Shukla

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacqueline C Alexander

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Qiu

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marvin Wickens

    Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Te-Wen Lo

    Department of Biology, Ithaca College, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Traci M Tanaka Hall

    Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
    For correspondence
    hall4@niehs.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-3009
  11. Zachary T Campbell

    Department of Biological Sciences, University of Texas Dallas, Richardson, United States
    For correspondence
    zachary.campbell@utdallas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3768-6996

Funding

National Institutes of Health (R01NS100788)

  • Zachary T Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,355
    views
  • 307
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vandita D Bhat
  2. Kathleen L McCann
  3. Yeming Wang
  4. Dallas R Fonseca
  5. Tarjani Shukla
  6. Jacqueline C Alexander
  7. Chen Qiu
  8. Marvin Wickens
  9. Te-Wen Lo
  10. Traci M Tanaka Hall
  11. Zachary T Campbell
(2019)
Engineering a conserved RNA regulatory protein repurposes its biological function in vivo
eLife 8:e43788.
https://doi.org/10.7554/eLife.43788

Share this article

https://doi.org/10.7554/eLife.43788

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.