Abstract

Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+-binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.

Data availability

The three-dimensional cryo-EM density maps as well as the modelled coordinated have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank, respectively. The deposition includes the cryo-EM maps, both half-maps, the mask used for final FSC calculation and the refined unmasked maps. The raw data (several TBs in size) can be provided upon request.

The following data sets were generated

Article and author information

Author details

  1. Valeria Kalienkova

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4143-6172
  2. Vanessa Clerico Mosina

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8013-0144
  3. Laura Bryner

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Gert T Oostergetel

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Raimund Dutzler

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    dutzler@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2193-6129
  6. Cristina Paulino

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    For correspondence
    c.paulino@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7017-109X

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (740.018.016)

  • Cristina Paulino

H2020 European Research Council (339116)

  • Raimund Dutzler

H2020 European Research Council (AnoBest)

  • Raimund Dutzler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton Jon Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Version history

  1. Received: December 12, 2018
  2. Accepted: February 8, 2019
  3. Accepted Manuscript published: February 20, 2019 (version 1)
  4. Accepted Manuscript updated: February 21, 2019 (version 2)
  5. Version of Record published: March 12, 2019 (version 3)

Copyright

© 2019, Kalienkova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,100
    views
  • 867
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valeria Kalienkova
  2. Vanessa Clerico Mosina
  3. Laura Bryner
  4. Gert T Oostergetel
  5. Raimund Dutzler
  6. Cristina Paulino
(2019)
Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
eLife 8:e44364.
https://doi.org/10.7554/eLife.44364

Share this article

https://doi.org/10.7554/eLife.44364

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.