1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM

  1. Valeria Kalienkova
  2. Vanessa Clerico Mosina
  3. Laura Bryner
  4. Gert T Oostergetel
  5. Raimund Dutzler  Is a corresponding author
  6. Cristina Paulino  Is a corresponding author
  1. University of Zürich, Switzerland
  2. University of Groningen, Netherlands
Research Article
  • Cited 8
  • Views 3,312
  • Annotations
Cite this article as: eLife 2019;8:e44364 doi: 10.7554/eLife.44364

Abstract

Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+-binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.

Article and author information

Author details

  1. Valeria Kalienkova

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4143-6172
  2. Vanessa Clerico Mosina

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8013-0144
  3. Laura Bryner

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Gert T Oostergetel

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Raimund Dutzler

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    dutzler@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2193-6129
  6. Cristina Paulino

    Department of Structural Biology, University of Groningen, Groningen, Netherlands
    For correspondence
    c.paulino@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7017-109X

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (740.018.016)

  • Cristina Paulino

H2020 European Research Council (339116)

  • Raimund Dutzler

H2020 European Research Council (AnoBest)

  • Raimund Dutzler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton Jon Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Publication history

  1. Received: December 12, 2018
  2. Accepted: February 8, 2019
  3. Accepted Manuscript published: February 20, 2019 (version 1)
  4. Accepted Manuscript updated: February 21, 2019 (version 2)
  5. Version of Record published: March 12, 2019 (version 3)

Copyright

© 2019, Kalienkova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,312
    Page views
  • 570
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Manatschal et al.
    Research Article
    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Pim J Huis in 't Veld et al.
    Research Article