Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
Abstract
Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+-binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.
Data availability
The three-dimensional cryo-EM density maps as well as the modelled coordinated have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank, respectively. The deposition includes the cryo-EM maps, both half-maps, the mask used for final FSC calculation and the refined unmasked maps. The raw data (several TBs in size) can be provided upon request.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in DDMProtein Data Bank, 6QM5.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in DDMProtein Data Bank, 6QM6.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in DDMElectron Microscopy Data Bank, EMD-4588.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in DDMElectron Microscopy Data Bank, EMD-4589.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (open state)Electron Microscopy Data Bank, EMD-4592.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (intermediate state)Electron Microscopy Data Bank, EMD-4593.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (closed state)Electron Microscopy Data Bank, EMD-4594.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in nanodiscElectron Microscopy Data Bank, EMD-4587.
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (740.018.016)
- Cristina Paulino
H2020 European Research Council (339116)
- Raimund Dutzler
H2020 European Research Council (AnoBest)
- Raimund Dutzler
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Kalienkova et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,324
- views
-
- 893
- downloads
-
- 98
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
In the bacterium M. smegmatis, an enzyme called MftG allows the the cofactor mycofactocin to transfers electrons released during ethanol metabolism to the electron transport chain.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.