Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA

Abstract

Simultaneous measurement of cell lineage and cell fates is a longstanding goal in biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic organism without genetic engineering.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE122576 and GSE122577.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Xu

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0944-9835
  2. Kevin Nuno

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ulrike M Litzenburger

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Yanyan Qi

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. M Ryan Corces

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    For correspondence
    rcorces@stanford.edu
    Competing interests
    No competing interests declared.
  6. Ravindra Majeti

    Department of Medicine, Stanford University, Stanford, United States
    For correspondence
    rmajeti@stanford.edu
    Competing interests
    Ravindra Majeti, Reviewing editor, eLife.
  7. Howard Y Chang

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    For correspondence
    howchang@stanford.edu
    Competing interests
    Howard Y Chang, is a co-founder of Accent Therapeutics and an advisor for 10x Genomics and Spring Discovery. Stanford University has filed a patent on ATAC-seq(US20160060691A1), on which HYC is named as an inventor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9459-4393

Funding

National Human Genome Research Institute (P50-HG007735)

  • Howard Y Chang

Howard Hughes Medical Institute

  • Howard Y Chang

National Cancer Institute (R01HL142637)

  • Ravindra Majeti

National Cancer Institute (R01CA188055)

  • Ravindra Majeti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ross L Levine, Memorial Sloan Kettering Cancer Center, United States

Ethics

Human subjects: AML samples were obtained from patients at the Stanford Medical Center with informed consent, according to institutional review board (IRB)-approved protocols (Stanford IRB, 18329 and 6453).

Version history

  1. Received: January 12, 2019
  2. Accepted: April 7, 2019
  3. Accepted Manuscript published: April 8, 2019 (version 1)
  4. Accepted Manuscript updated: April 9, 2019 (version 2)
  5. Version of Record published: April 17, 2019 (version 3)

Copyright

© 2019, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,052
    Page views
  • 1,495
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Xu
  2. Kevin Nuno
  3. Ulrike M Litzenburger
  4. Yanyan Qi
  5. M Ryan Corces
  6. Ravindra Majeti
  7. Howard Y Chang
(2019)
Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA
eLife 8:e45105.
https://doi.org/10.7554/eLife.45105

Share this article

https://doi.org/10.7554/eLife.45105

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Cancer Biology
    Carolyn M Jablonowski, Waise Quarni ... Jun Yang
    Research Article

    Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a ‘molecular glue’ that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.