Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA

Abstract

Simultaneous measurement of cell lineage and cell fates is a longstanding goal in biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic organism without genetic engineering.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE122576 and GSE122577.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Xu

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0944-9835
  2. Kevin Nuno

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ulrike M Litzenburger

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Yanyan Qi

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. M Ryan Corces

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    For correspondence
    rcorces@stanford.edu
    Competing interests
    No competing interests declared.
  6. Ravindra Majeti

    Department of Medicine, Stanford University, Stanford, United States
    For correspondence
    rmajeti@stanford.edu
    Competing interests
    Ravindra Majeti, Reviewing editor, eLife.
  7. Howard Y Chang

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    For correspondence
    howchang@stanford.edu
    Competing interests
    Howard Y Chang, is a co-founder of Accent Therapeutics and an advisor for 10x Genomics and Spring Discovery. Stanford University has filed a patent on ATAC-seq(US20160060691A1), on which HYC is named as an inventor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9459-4393

Funding

National Human Genome Research Institute (P50-HG007735)

  • Howard Y Chang

Howard Hughes Medical Institute

  • Howard Y Chang

National Cancer Institute (R01HL142637)

  • Ravindra Majeti

National Cancer Institute (R01CA188055)

  • Ravindra Majeti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: AML samples were obtained from patients at the Stanford Medical Center with informed consent, according to institutional review board (IRB)-approved protocols (Stanford IRB, 18329 and 6453).

Copyright

© 2019, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,518
    views
  • 1,554
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Xu
  2. Kevin Nuno
  3. Ulrike M Litzenburger
  4. Yanyan Qi
  5. M Ryan Corces
  6. Ravindra Majeti
  7. Howard Y Chang
(2019)
Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA
eLife 8:e45105.
https://doi.org/10.7554/eLife.45105

Share this article

https://doi.org/10.7554/eLife.45105

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Susanne Tilk, Judith Frydman ... Dmitri A Petrov
    Research Article

    In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.