Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA

Abstract

Simultaneous measurement of cell lineage and cell fates is a longstanding goal in biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic organism without genetic engineering.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE122576 and GSE122577.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Xu

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0944-9835
  2. Kevin Nuno

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ulrike M Litzenburger

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Yanyan Qi

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. M Ryan Corces

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Ravindra Majeti

    Department of Medicine, Stanford University, Stanford, United States
    For correspondence
    rmajeti@stanford.edu
    Competing interests
    Ravindra Majeti, Reviewing editor, eLife.
  7. Howard Y Chang

    Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
    For correspondence
    howchang@stanford.edu
    Competing interests
    Howard Y Chang, is a co-founder of Accent Therapeutics and an advisor for 10x Genomics and Spring Discovery. Stanford University has filed a patent on ATAC-seq(US20160060691A1), on which HYC is named as an inventor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9459-4393

Funding

National Human Genome Research Institute (P50-HG007735)

  • Howard Y Chang

Howard Hughes Medical Institute

  • Howard Y Chang

National Cancer Institute (R01HL142637)

  • Ravindra Majeti

National Cancer Institute (R01CA188055)

  • Ravindra Majeti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ross L Levine, Memorial Sloan Kettering Cancer Center, United States

Ethics

Human subjects: AML samples were obtained from patients at the Stanford Medical Center with informed consent, according to institutional review board (IRB)-approved protocols (Stanford IRB, 18329 and 6453).

Version history

  1. Received: January 12, 2019
  2. Accepted: April 7, 2019
  3. Accepted Manuscript published: April 8, 2019 (version 1)
  4. Accepted Manuscript updated: April 9, 2019 (version 2)
  5. Version of Record published: April 17, 2019 (version 3)

Copyright

© 2019, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,096
    Page views
  • 1,498
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Xu
  2. Kevin Nuno
  3. Ulrike M Litzenburger
  4. Yanyan Qi
  5. M Ryan Corces
  6. Ravindra Majeti
  7. Howard Y Chang
(2019)
Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA
eLife 8:e45105.
https://doi.org/10.7554/eLife.45105

Share this article

https://doi.org/10.7554/eLife.45105

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.