1. Neuroscience
Download icon

Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms

  1. Shogo Haraguchi  Is a corresponding author
  2. Masaki Kamata
  3. Takuma Tokita
  4. Kei-ichiro Tashiro
  5. Miku Sato
  6. Mitsuki Nozaki
  7. Mayumi Okamoto-Katsuyama
  8. Isao Shimizu
  9. Guofeng Han
  10. Vishwajit Sur Chowdhury
  11. Xiao-Feng Lei
  12. Takuro Miyazaki
  13. Joo-ri Kim-Kaneyama
  14. Tomoya Nakamachi
  15. Kouhei Matsuda
  16. Hirokazu Ohtaki
  17. Toshinobu Tokumoto
  18. Tetsuya Tachibana
  19. Akira Miyazaki
  20. Kazuyoshi Tsutsui  Is a corresponding author
  1. Waseda University, Japan
  2. Kyushu University, Japan
  3. Showa University School of Medicine, Japan
  4. University of Toyama, Japan
  5. Shizuoka University, Japan
  6. Ehime University, Japan
Research Article
  • Cited 12
  • Views 1,765
  • Annotations
Cite this article as: eLife 2019;8:e45306 doi: 10.7554/eLife.45306

Abstract

The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files for Figures 1-10 have been deposited to Dryad DOI: https://doi.org/10.5061/dryad.k6g8b53

The following data sets were generated

Article and author information

Author details

  1. Shogo Haraguchi

    Department of Biology, Waseda University, Tokyo, Japan
    For correspondence
    shogo.haraguchi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8731-3311
  2. Masaki Kamata

    Department of Biology, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takuma Tokita

    Department of Biology, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kei-ichiro Tashiro

    Department of Biology, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Miku Sato

    Department of Biology, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Mitsuki Nozaki

    Department of Biology, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Mayumi Okamoto-Katsuyama

    Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Isao Shimizu

    Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Guofeng Han

    Laboratory of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Vishwajit Sur Chowdhury

    Laboratory of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiao-Feng Lei

    Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Takuro Miyazaki

    Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Joo-ri Kim-Kaneyama

    Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Tomoya Nakamachi

    Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Kouhei Matsuda

    Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8253-5230
  16. Hirokazu Ohtaki

    Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  17. Toshinobu Tokumoto

    Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. Tetsuya Tachibana

    Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  19. Akira Miyazaki

    Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  20. Kazuyoshi Tsutsui

    Department of Biology, Waseda University, Tokyo, Japan
    For correspondence
    k-tsutsui@waseda.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (15K18571)

  • Shogo Haraguchi

Takeda Science Foundation

  • Shogo Haraguchi

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • Shogo Haraguchi

Kao Corporation

  • Shogo Haraguchi

Naito Foundation

  • Shogo Haraguchi

Narishige Zoological Science Foundation

  • Shogo Haraguchi

Yamaguchi Endocrine Research Foundation

  • Shogo Haraguchi

Suntory Foundation for Life Sciences

  • Shogo Haraguchi

Japan Society for the Promotion of Science (22227002)

  • Kazuyoshi Tsutsui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocols (2011-A090, 2012-A003, 2013-A010, 2014-A063, 2015-A012, 29M050, 30M047) were in accordance with the Guide for the Care and Use of Laboratory Animals of Waseda University or Showa University, Japan.

Reviewing Editor

  1. Vatsala Thirumalai, National Centre for Biological Sciences, India

Publication history

  1. Received: January 18, 2019
  2. Accepted: September 29, 2019
  3. Accepted Manuscript published: September 30, 2019 (version 1)
  4. Version of Record published: November 12, 2019 (version 2)

Copyright

© 2019, Haraguchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,765
    Page views
  • 258
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Blaise Robert et al.
    Research Article Updated

    Basal forebrain cholinergic neurons (BFCNs) project throughout the cortex to regulate arousal, stimulus salience, plasticity, and learning. Although often treated as a monolithic structure, the basal forebrain features distinct connectivity along its rostrocaudal axis that could impart regional differences in BFCN processing. Here, we performed simultaneous bulk calcium imaging from rostral and caudal BFCNs over a 1-month period of variable reinforcement learning in mice. BFCNs in both regions showed equivalently weak responses to unconditioned visual stimuli and anticipated rewards. Rostral BFCNs in the horizontal limb of the diagonal band were more responsive to reward omission, more accurately classified behavioral outcomes, and more closely tracked fluctuations in pupil-indexed global brain state. Caudal tail BFCNs in globus pallidus and substantia innominata were more responsive to unconditioned auditory stimuli, orofacial movements, aversive reinforcement, and showed robust associative plasticity for punishment-predicting cues. These results identify a functional topography that diversifies cholinergic modulatory signals broadcast to downstream brain regions.

    1. Neuroscience
    Rawan AlSubaie et al.
    Research Article Updated

    Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.