1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

The genetic factors of bilaterian evolution

  1. Peter Heger  Is a corresponding author
  2. Wen Zheng
  3. Anna Rottmann
  4. Kristen A Panfilio
  5. Thomas Wiehe
  1. Universitaet zu Koeln, Germany
  2. Sichuan University, China
  3. University of Cologne, Germany
Research Article
  • Cited 0
  • Views 809
  • Annotations
Cite this article as: eLife 2020;9:e45530 doi: 10.7554/eLife.45530

Abstract

The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.

Article and author information

Author details

  1. Peter Heger

    Institute for Genetics, Universitaet zu Koeln, Cologne, Germany
    For correspondence
    peter.heger@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2583-2981
  2. Wen Zheng

    West China-Washington Mitochondria and Metabolism Research Center, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Rottmann

    Institute for Genetics, Universitaet zu Koeln, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Kristen A Panfilio

    Institute for Zoology/Developmental Biology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6417-251X
  5. Thomas Wiehe

    Institut fuer Genetik, Universitaet zu Koeln, Koeln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8932-2772

Funding

Deutsche Forschungsgemeinschaft (CRC~680 and CRC~1211)

  • Thomas Wiehe

Deutsche Forschungsgemeinschaft (CRC~680)

  • Kristen A Panfilio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Publication history

  1. Received: January 31, 2019
  2. Accepted: July 3, 2020
  3. Accepted Manuscript published: July 16, 2020 (version 1)

Copyright

© 2020, Heger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 809
    Page views
  • 196
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Hui Gong, Lucia Prieto-Godino
    Insight

    Natural light gradients within a habitat may have helped form new fly species that have differing preferences for light.

    1. Evolutionary Biology
    2. Neuroscience
    Ian W Keesey et al.
    Research Article Updated

    The examination of phylogenetic and phenotypic characteristics of the nervous system, such as behavior and neuroanatomy, can be utilized as a means to assess speciation. Recent studies have proposed a fundamental tradeoff between two sensory organs, the eye and the antenna. However, the identification of ecological mechanisms for this observed tradeoff have not been firmly established. Our current study examines several monophyletic species within the obscura group, and asserts that despite their close relatedness and overlapping ecology, they deviate strongly in both visual and olfactory investment. We contend that both courtship and microhabitat preferences support the observed inverse variation in these sensory traits. Here, this variation in visual and olfactory investment seems to provide relaxed competition, a process by which similar species can use a shared environment differently and in ways that help them coexist. Moreover, that behavioral separation according to light gradients occurs first, and subsequently, courtship deviations arise.