The hippocampus supports deliberation during value based decisions

Abstract

Choosing between two items involves deliberation and comparison of the features of each item and its value. Such decisions take more time when choosing between options of similar value, possibly because these decisions require more evidence, but the mechanisms involved are not clear. We propose that the hippocampus supports deliberation about value, given its well-known role in prospection and relational cognition. We assessed the role of the hippocampus in deliberation in two experiments. First, using fMRI in healthy participants, we found that BOLD activity in the hippocampus increased as a function of deliberation time. Second, we found that patients with hippocampal damage exhibited more stochastic choices and longer reaction times than controls, possibly due to their failure to construct value based on internal evidence during deliberation. Both sets of results were stronger in value-based decisions compared to perceptual decisions.

Data availability

Behavioral data from this study are available as source data included in this submission. Behavioral analysis code is available as source code included in this submission. Analysis code as well as task code is available at https://github.com/abakkour/MDMRT_scan. Imaging data has been deposited to OpenNeuro and is available to download at https://openneuro.org/datasets/ds002006/versions/1.0.0

The following data sets were generated

Article and author information

Author details

  1. Akram Bakkour

    Department of Psychology, Columbia University, New York, United States
    For correspondence
    ab4096@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6070-4945
  2. Daniela J Palombo

    Memory Disorders Research Center, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Zylberberg

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2572-4748
  4. Yul HR Kang

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Allison Reid

    Memory Disorders Research Center, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mieke Verfaellie

    Memory Disorders Research Center, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael N Shadlen

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2002-2210
  8. Daphna Shohamy

    Department of Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

McKnight Foundation (McKnight Memory and Cognitive Disorders Award)

  • Daphna Shohamy

National Science Foundation (NSF grant #1606916)

  • Akram Bakkour

National Institutes of Health (NIH grant # R01EY011378)

  • Michael N Shadlen

Howard Hughes Medical Institute (HHMI Investigator)

  • Michael N Shadlen

U.S. Department of Veterans Affairs (VA Senior Research Career Scientist Award & VA Merit Grant CX001748)

  • Mieke Verfaellie

National Eye Institute (NEI grant T32-EY013933)

  • Yul HR Kang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The contents of this manuscript do not represent the view of the US Department of Veterans Affairs or the US Government.

Ethics

Human subjects: Experimental procedures in Experiment 1 were approved by the Institutional Review Board (IRB) at Columbia University through Columbia IRB Protocol #AAAO5907. All fMRI participants provided signed informed consent before taking part in the study. All patients and age-matched healthy participants in experiment 2 provided informed consent in accordance with the Institutional Review Boards at Boston University and the VA Boston Healthcare System outlined in VABHS IRB #2997.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,806
    views
  • 934
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akram Bakkour
  2. Daniela J Palombo
  3. Ariel Zylberberg
  4. Yul HR Kang
  5. Allison Reid
  6. Mieke Verfaellie
  7. Michael N Shadlen
  8. Daphna Shohamy
(2019)
The hippocampus supports deliberation during value based decisions
eLife 8:e46080.
https://doi.org/10.7554/eLife.46080

Share this article

https://doi.org/10.7554/eLife.46080

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.