Decision Making: Remembering to choose the future
From the philosophers of ancient Greece to the self-help books of today, humans have long been interested in choice. Philosophers and ethicists have debated what goals we ought to choose for millennia, and for a century or more economists and psychologists have studied what goals we will choose. However, neuroscience has only recently begun to systematically address how we choose.
Whether we are pondering life-defining decisions about love, career or commitment to a cause, or simply picking which snacks to buy in the grocery store, it is still unclear what regions of the brain are involved in making choices, and what information those regions encode. In everyday language, we often talk about ‘value’ (or in economic terms, ‘utility’) as the driver of such decisions: we consider our options, and select the one with the highest value. Hundreds of functional MRI (or fMRI) studies in healthy humans have identified a consistent set of brain regions which seem to process signals associated with subjective values; this suggests that value is indeed a concept that has biological roots (Bartra et al., 2013). However, the nature of the information that contributes to the neural signals related to value remains a matter of debate (O'Doherty, 2014). In other words, it is not clear what we think about when we think about value.
In fact, scientists know far less about choices based on value than they do about perceptual decisions (such as assessing if a noisy array of moving dots is trending more to the left or to the right; Shadlen and Kiani, 2013). During perceptual choices, external information is repeatedly sampled and the neural representation of this evidence accumulates until a threshold is crossed and a decision is triggered. These tasks are associated with well-known behavioral phenomena – for instance, choices with less perceptual evidence take longer to resolve – which are captured by drift diffusion models (Ratcliff and McKoon, 2008).
It has been proposed that value-based decisions might occur in a similar way (Rangel et al., 2008). However, while it is obvious what knowledge is accumulating as a person gazes at a screen filled with moving dots, it is less clear what information might be sampled to support a decision based on value. Now, in eLife, Akram Bakkour of Columbia University and colleagues report that, at least in part, we may be thinking about past experiences (Bakkour et al., 2019).
Their work makes a strong case that value-based deliberation engages the hippocampus, a small structure within the brain that is involved in long-term memory. Although past experiences are a likely source of relevant information in value-based decisions, to date researchers have focused mostly on other regions of the brain such as the ventral prefrontal cortex and the striatum.
Bakkour et al. – who are based at Columbia and the Memory Disorders Research Center – first used fMRI to establish that activity in the hippocampus is greater for longer deliberations during value-based choice. They then harnessed the power of a lesion experiment to infer that the structure is necessary for such choices (Vaidya et al., 2019). Patients with hippocampal damage were slower to make decisions, and somewhat more variable in what they chose. These hippocampal effects were specific to value-based decisions. Deliberation time in a classic perceptual decision task did not relate to hippocampal signal, nor was it influenced by hippocampal damage. While perceptual decisions involve sampling external evidence, Bakkour et al. propose that deliberation during value-based choice requires sampling internal evidence. This includes – although is presumably not limited to – using the hippocampus to conjure up past experiences with similar options. Ultimately, these results will help to broaden the anatomical scope of decision neuroscience.
Studies have already shown that ‘attention’, while intuitive and attractive as a holistic concept, is in fact composed of dozens of distinct processes with definable characteristics that rely on different neural circuits. It is likely that ‘value’ will also require further decomposition. Armed with this knowledge, it may become possible to better understand how the brain carries out the important value-based decisions that define us as individuals and shape the directions of our societies.
References
-
The problem with valueNeuroscience & Biobehavioral Reviews 43:259–268.https://doi.org/10.1016/j.neubiorev.2014.03.027
-
A framework for studying the neurobiology of value-based decision makingNature Reviews Neuroscience 9:545–556.https://doi.org/10.1038/nrn2357
-
Lesion studies in contemporary neuroscienceTrends in Cognitive Sciences 23:653–671.https://doi.org/10.1016/j.tics.2019.05.009
Article and author information
Author details
Publication history
Copyright
© 2019, Fellows
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,927
- views
-
- 156
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
-
- Neuroscience
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.