Decision Making: Remembering to choose the future
From the philosophers of ancient Greece to the self-help books of today, humans have long been interested in choice. Philosophers and ethicists have debated what goals we ought to choose for millennia, and for a century or more economists and psychologists have studied what goals we will choose. However, neuroscience has only recently begun to systematically address how we choose.
Whether we are pondering life-defining decisions about love, career or commitment to a cause, or simply picking which snacks to buy in the grocery store, it is still unclear what regions of the brain are involved in making choices, and what information those regions encode. In everyday language, we often talk about ‘value’ (or in economic terms, ‘utility’) as the driver of such decisions: we consider our options, and select the one with the highest value. Hundreds of functional MRI (or fMRI) studies in healthy humans have identified a consistent set of brain regions which seem to process signals associated with subjective values; this suggests that value is indeed a concept that has biological roots (Bartra et al., 2013). However, the nature of the information that contributes to the neural signals related to value remains a matter of debate (O'Doherty, 2014). In other words, it is not clear what we think about when we think about value.
In fact, scientists know far less about choices based on value than they do about perceptual decisions (such as assessing if a noisy array of moving dots is trending more to the left or to the right; Shadlen and Kiani, 2013). During perceptual choices, external information is repeatedly sampled and the neural representation of this evidence accumulates until a threshold is crossed and a decision is triggered. These tasks are associated with well-known behavioral phenomena – for instance, choices with less perceptual evidence take longer to resolve – which are captured by drift diffusion models (Ratcliff and McKoon, 2008).
It has been proposed that value-based decisions might occur in a similar way (Rangel et al., 2008). However, while it is obvious what knowledge is accumulating as a person gazes at a screen filled with moving dots, it is less clear what information might be sampled to support a decision based on value. Now, in eLife, Akram Bakkour of Columbia University and colleagues report that, at least in part, we may be thinking about past experiences (Bakkour et al., 2019).
Their work makes a strong case that value-based deliberation engages the hippocampus, a small structure within the brain that is involved in long-term memory. Although past experiences are a likely source of relevant information in value-based decisions, to date researchers have focused mostly on other regions of the brain such as the ventral prefrontal cortex and the striatum.
Bakkour et al. – who are based at Columbia and the Memory Disorders Research Center – first used fMRI to establish that activity in the hippocampus is greater for longer deliberations during value-based choice. They then harnessed the power of a lesion experiment to infer that the structure is necessary for such choices (Vaidya et al., 2019). Patients with hippocampal damage were slower to make decisions, and somewhat more variable in what they chose. These hippocampal effects were specific to value-based decisions. Deliberation time in a classic perceptual decision task did not relate to hippocampal signal, nor was it influenced by hippocampal damage. While perceptual decisions involve sampling external evidence, Bakkour et al. propose that deliberation during value-based choice requires sampling internal evidence. This includes – although is presumably not limited to – using the hippocampus to conjure up past experiences with similar options. Ultimately, these results will help to broaden the anatomical scope of decision neuroscience.
Studies have already shown that ‘attention’, while intuitive and attractive as a holistic concept, is in fact composed of dozens of distinct processes with definable characteristics that rely on different neural circuits. It is likely that ‘value’ will also require further decomposition. Armed with this knowledge, it may become possible to better understand how the brain carries out the important value-based decisions that define us as individuals and shape the directions of our societies.
References
-
The problem with valueNeuroscience & Biobehavioral Reviews 43:259–268.https://doi.org/10.1016/j.neubiorev.2014.03.027
-
A framework for studying the neurobiology of value-based decision makingNature Reviews Neuroscience 9:545–556.https://doi.org/10.1038/nrn2357
-
Lesion studies in contemporary neuroscienceTrends in Cognitive Sciences 23:653–671.https://doi.org/10.1016/j.tics.2019.05.009
Article and author information
Author details
Publication history
Copyright
© 2019, Fellows
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,919
- views
-
- 156
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick’s 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory. We used single-molecule detection, super-resolution microscopy and MINFLUX to probe the molecular composition of PSD95 supercomplexes in mice carrying genetically encoded HaloTags, eGFP, and mEoS2. We found a population of PSD95-containing supercomplexes comprised of two copies of PSD95, with a dominant 12.7 nm separation. Time-stamping of PSD95 subunits in vivo revealed that each PSD95 subunit was sequentially replaced over days and weeks. Comparison of brain regions showed subunit replacement was slowest in the cortex, where PSD95 protein lifetime is longest. Our findings reveal that protein supercomplexes within the postsynaptic density can be maintained by gradual replacement of individual subunits providing a mechanism for stable maintenance of their organization. Moreover, we extend Crick’s model by suggesting that synapses with slow subunit replacement of protein supercomplexes and long-protein lifetimes are specialized for long-term memory storage and that these synapses are highly enriched in superficial layers of the cortex where long-term memories are stored.
-
- Neuroscience
Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.