1. Neuroscience
Download icon

Locomotion: Building behaviors, one layer at a time

  1. Claire Wyart  Is a corresponding author
  2. Vatsala Thirumalai  Is a corresponding author
  1. Sorbonne Université, France
  2. Tata Institute of Fundamental Research, India
Insight
  • Cited 1
  • Views 1,409
  • Annotations
Cite this article as: eLife 2019;8:e46375 doi: 10.7554/eLife.46375

Abstract

New interneurons are added in the hindbrain to support more complex movements as young zebrafish get older.

Main text

Most animals are born with an immature nervous system and, at first, they are only equipped with the rudimentary reflexes required to ingest food or avoid predators. As the nervous system matures, the complex movements needed for hunting or mating get added to the repertoire of the animals. However, it is not clear how these new motor skills are gradually acquired while the nervous system is still under construction.

This question remains challenging because it is difficult to estimate when the neurons that underpin specific behaviors are born. Now, in eLife, Avinash Pujala and Minoru Koyama of the Janelia Research Campus report that, in the hindbrain of zebrafish larvae, the birthdate of neurons determines in which type of movements these cells participate (Pujala and Koyama, 2019).

Zebrafish larvae are widely used as model organisms to study how the nervous system develops. This is because these fish are transparent, they grow outside of the mother’s body, and a wide range of genetic techniques is available to study them. Two-day-old zebrafish larvae are mostly unable to move: however, they show strong and fast escape responses when exposed to acoustic or mechanical stimuli, and they produce slow but powerful struggling movements to free themselves if they are restrained. At five days, these behaviors persist but the larvae also start to produce comparatively weaker and slower tail bends that allow them to search their environment for food.

To explore how the nervous system develops in zebrafish, Pujala and Koyama focused on V2a interneurons, a group of excitatory neurons essential for locomotion. A subset of V2a neurons is present in the hindbrain and connects to neurons in the spinal cord (Kimura et al., 2013; Kinkhabwala et al., 2011). The Janelia team then combined three methods: age-dependent photoconversion of fluorescent proteins to time the birth of the hindbrain V2a interneurons; paired-electrophysiological recording to map their connectivity; and population recording to monitor their activity during movement. These experiments showed that V2a interneurons developed in the hindbrain to implement the new, refined movements. Meanwhile, early-born neurons continued to underpin the old and crude reflexes of escapes and struggles (Figure 1). Further experiments revealed that the birth order of the cells determined their biophysical properties and how they connected to spinal neurons, thus allowing V2a interneurons born at different times to support distinct behaviors.

Parallel layers of interneurons in zebrafish larvae.

In two-day-old zebrafish larvae (left), early-born V2a interneurons (purple) in the hindbrain are recruited to circuits to produce rudimentary movements such as escape and struggle. In five-day-old larvae (right), a parallel layer of late-born V2a interneurons (green) is added to the existing circuits to support a range of complex movements, such as spontaneous slow swimming to search for food.

These experiments build on previous studies which demonstrated that, in zebrafish, the birthdate of premotor interneurons in the spinal cord determines which locomotion pattern these cells control (McLean et al., 2008; McLean et al., 2007). The study by Pujala and Koyama also extends to the hindbrain the concept of behavioral ‘modules’. These units rely on subcircuits of neurons that are recruited based on the speed and vigor required by movements (Ampatzis et al., 2014; Song et al., 2018).

It was already known that new motor behaviors can emerge by reconfiguring existing circuits through changes in connectivity or the addition of neuromodulatory projections (Marder and Rehm, 2005; Marin-Burgin et al., 2008). For instance, neuromodulators such as dopamine can act on spinal or supraspinal targets, making motor patterns mature during development (Lambert et al., 2012; Thirumalai and Cline, 2008). What the study by Pujala and Koyama demonstrates is that new circuits can form alongside existing components, which helps to expand the repertoire of movements.

Why would organisms benefit from such a layered organization? First, gradually adding new circuits might be an efficient way to create modules that generate movements of varying speed and vigor; it might also help gate transitions between such modules. Different circuits may then be recruited to generate appropriate motor patterns in response to immediate needs.

Second, acquiring these parallel circuits one after the other helps to preserve the ‘old’ modules required for survival, even as many new neurons and connections appear in the central nervous system. Finally, this parallel organization allows new circuits and behaviors to be added in an open-ended manner, without imposing constraints based on existing circuits.

Many mechanisms, including the addition of new neurons, preside over the acquisition of brain functions such as language and memory. In the long run, the work by Pujala and Koyama provides a framework in which to investigate these processes.

References

Article and author information

Author details

  1. Claire Wyart

    Claire Wyart is in the Institut du Cerveau et de la Moelle Epinière, Sorbonne Université, Paris, France

    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975
  2. Vatsala Thirumalai

    Vatsala Thirumalai is in the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

    For correspondence
    vatsala@ncbs.res.in
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-5023

Publication history

  1. Version of Record published: April 4, 2019 (version 1)

Copyright

© 2019, Wyart and Thirumalai

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,409
    Page views
  • 136
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Soledad Dominguez et al.
    Research Article

    Mature neural networks synchronize and integrate spatiotemporal activity patterns to support cognition. Emergence of these activity patterns and functions is believed to be developmentally regulated, but the postnatal time course for neural networks to perform complex computations remains unknown. We investigate the progression of large-scale synaptic and cellular activity patterns across development using high spatiotemporal resolution in vivo electrophysiology in immature mice. We reveal that mature cortical processes emerge rapidly and simultaneously after a discrete but volatile transition period at the beginning of the second postnatal week of rodent development. The transition is characterized by relative neural quiescence, after which spatially distributed, temporally precise, and internally organized activity occurs. We demonstrate a similar developmental trajectory in humans, suggesting an evolutionarily conserved mechanism that could facilitate a transition in network operation. We hypothesize that this transient quiescent period is a requisite for the subsequent emergence of coordinated cortical networks.

    1. Neuroscience
    Kristen Lee, Chris Q Doe
    Research Advance Updated

    Individual neurons can undergo drastic structural changes, known as neuronal remodeling or structural plasticity. One example of this is in response to hormones, such as during puberty in mammals or metamorphosis in insects. However, in each of these examples, it remains unclear whether the remodeled neuron resumes prior patterns of connectivity, and if so, whether the persistent circuits drive similar behaviors. Here, we utilize a well-characterized neural circuit in the Drosophila larva: the moonwalker descending neuron (MDN) circuit. We previously showed that larval MDN induces backward crawling, and synapses onto the Pair1 interneuron to inhibit forward crawling (Carreira-Rosario et al., 2018). MDN is remodeled during metamorphosis and regulates backward walking in the adult fly. We investigated whether Pair1 is remodeled during metamorphosis and functions within the MDN circuit during adulthood. We assayed morphology and molecular markers to demonstrate that Pair1 is remodeled during metamorphosis and persists in the adult fly. MDN-Pair1 connectivity is lost during early pupal stages, when both neurons are severely pruned back, but connectivity is re-established at mid-pupal stages and persist into the adult. In the adult, optogenetic activation of Pair1 resulted in arrest of forward locomotion, similar to what is observed in larvae. Thus, the MDN-Pair1 neurons are an interneuronal circuit – a pair of synaptically connected interneurons – that is re-established during metamorphosis, yet generates similar locomotor behavior at both larval and adult stages.