Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle

Abstract

Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.

Data availability

Sequencing data were deposited to NCBI as Bioproject 485123.R code for filtering and data processing can be found here:https://github.com/sirmicrobe/U01_allele_freq_code.

The following data sets were generated

Article and author information

Author details

  1. Alfonso Santos-Lopez

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9163-9947
  2. Christopher W Marshall

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michelle R Scribner

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel J Snyder

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vaughn S Cooper

    Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    vaughn.cooper@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-0765

Funding

National Institutes of Health (U01AI124302-01)

  • Vaughn S Cooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Santos-Lopez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,377
    views
  • 1,911
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alfonso Santos-Lopez
  2. Christopher W Marshall
  3. Michelle R Scribner
  4. Daniel J Snyder
  5. Vaughn S Cooper
(2019)
Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle
eLife 8:e47612.
https://doi.org/10.7554/eLife.47612

Share this article

https://doi.org/10.7554/eLife.47612

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Devon M Fitzgerald
    Insight

    The way that bacteria grow – either floating in liquid or attached to a surface – affects their ability to evolve antimicrobial resistance and our ability to treat infections.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Gunther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.