1. Neuroscience
Download icon

DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning

  1. Jacob M Graving  Is a corresponding author
  2. Daniel Chae
  3. Hemal Naik
  4. Liang Li
  5. Benjamin Koger
  6. Blair R Costelloe
  7. Iain D Couzin
  1. Max Planck Institute of Animal Behavior, Germany
  2. Princeton University, United States
Tools and Resources
  • Cited 94
  • Views 17,558
  • Annotations
Cite this article as: eLife 2019;8:e47994 doi: 10.7554/eLife.47994

Abstract

Quantitative behavioral measurements are important for answering questions across scientific disciplines-from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in data quality and detail by allowing researchers to automatically estimate locations of an animal's body parts directly from images or videos. However, currently-available animal pose estimation methods have limitations in speed and robustness. Here we introduce a new easy-to-use software toolkit, DeepPoseKit, that addresses these problems using an efficient multi-scale deep-learning model, called Stacked DenseNet, and a fast GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances improve processing speed >2× with no loss in accuracy compared to currently-available methods. We demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory and field settings-including groups of interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior and has broad applicability across the behavioral sciences.

Data availability

Data used and generated for experiments and model comparisons are included in the supporting files. Posture datasets can be found at: https://github.com/jgraving/deepposekit-dataThe code for DeepPoseKit is publicly available at the URL we provided in the paper: https://github.com/jgraving/deepposekit/The reviewers should follow the provided instructions for installation in the README file https://github.com/jgraving/deepposekit/blob/master/README.md#installation. Example Jupyter notebooks for how to use the code are provided here: https://github.com/jgraving/deepposekit/tree/master/examples

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jacob M Graving

    Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    For correspondence
    jgraving@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5826-467X
  2. Daniel Chae

    Department of Computer Science, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Hemal Naik

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  4. Liang Li

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  5. Benjamin Koger

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  6. Blair R Costelloe

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  7. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Funding

National Science Foundation (IOS-1355061)

  • Iain D Couzin

Horizon 2020 Framework Programme (Marie Sklodowska-Curie grant agreement No. 748549)

  • Blair R Costelloe

Nvidia (GPU Grant)

  • Blair R Costelloe

Office of Naval Research (N00014-09-1-1074)

  • Iain D Couzin

Office of Naval Research (N00014-14-1-0635)

  • Iain D Couzin

Army Research Office (W911NG-11-1-0385)

  • Iain D Couzin

Army Research Office (W911NF14-1-0431)

  • Iain D Couzin

Deutsche Forschungsgemeinschaft (DFG Centre of Excellence 2117)

  • Iain D Couzin

University of Konstanz (Zukunftskolleg Investment Grant)

  • Blair R Costelloe

The Strukture-und Innovations fonds fur die Forschung of the State of Baden-Wurttemberg

  • Iain D Couzin

Max Planck Society

  • Iain D Couzin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures for collecting the zebra (E. grevyi) dataset were reviewed and approved by Ethikrat, the independent Ethics Council of the Max Planck Society. The zebra dataset was collected with the permission of Kenya's National Commission for Science, Technology and Innovation (NACOSTI/P/17/59088/15489 and NACOSTI/P/18/59088/21567) using drones operated by B.R.C. with the permission of the Kenya Civil Aviation Authority (authorization numbers: KCAA/OPS/2117/4 Vol. 2 (80), KCAA/OPS/2117/4 Vol. 2 (81), KCAA/OPS/2117/5 (86) and KCAA/OPS/2117/5 (87); RPAS Operator Certificate numbers: RPA/TP/0005 AND RPA/TP/000-0009).

Reviewing Editor

  1. Josh W Shaevitz, Princeton University, United States

Publication history

  1. Received: April 26, 2019
  2. Accepted: September 18, 2019
  3. Accepted Manuscript published: October 1, 2019 (version 1)
  4. Version of Record published: December 6, 2019 (version 2)

Copyright

© 2019, Graving et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 17,558
    Page views
  • 1,633
    Downloads
  • 94
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Christian Brodbeck et al.
    Research Article

    Speech processing is highly incremental. It is widely accepted that human listeners continuously use the linguistic context to anticipate upcoming concepts, words, and phonemes. However, previous evidence supports two seemingly contradictory models of how a predictive context is integrated with the bottom-up sensory input: Classic psycholinguistic paradigms suggest a two-stage process, in which acoustic input initially leads to local, context-independent representations, which are then quickly integrated with contextual constraints. This contrasts with the view that the brain constructs a single coherent, unified interpretation of the input, which fully integrates available information across representational hierarchies, and thus uses contextual constraints to modulate even the earliest sensory representations. To distinguish these hypotheses, we tested magnetoencephalography responses to continuous narrative speech for signatures of local and unified predictive models. Results provide evidence that listeners employ both types of models in parallel. Two local context models uniquely predict some part of early neural responses, one based on sublexical phoneme sequences, and one based on the phonemes in the current word alone; at the same time, even early responses to phonemes also reflect a unified model that incorporates sentence level constraints to predict upcoming phonemes. Neural source localization places the anatomical origins of the different predictive models in non-identical parts of the superior temporal lobes bilaterally, with the right hemisphere showing a relative preference for more local models. These results suggest that speech processing recruits both local and unified predictive models in parallel, reconciling previous disparate findings. Parallel models might make the perceptual system more robust, facilitate processing of unexpected inputs, and serve a function in language acquisition.

    1. Neuroscience
    Travis A Hage et al.
    Research Article

    Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.