DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning

  1. Jacob M Graving  Is a corresponding author
  2. Daniel Chae
  3. Hemal Naik
  4. Liang Li
  5. Benjamin Koger
  6. Blair R Costelloe
  7. Iain D Couzin
  1. Max Planck Institute of Animal Behavior, Germany
  2. Princeton University, United States

Abstract

Quantitative behavioral measurements are important for answering questions across scientific disciplines-from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in data quality and detail by allowing researchers to automatically estimate locations of an animal's body parts directly from images or videos. However, currently-available animal pose estimation methods have limitations in speed and robustness. Here we introduce a new easy-to-use software toolkit, DeepPoseKit, that addresses these problems using an efficient multi-scale deep-learning model, called Stacked DenseNet, and a fast GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances improve processing speed >2× with no loss in accuracy compared to currently-available methods. We demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory and field settings-including groups of interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior and has broad applicability across the behavioral sciences.

Data availability

Data used and generated for experiments and model comparisons are included in the supporting files. Posture datasets can be found at: https://github.com/jgraving/deepposekit-dataThe code for DeepPoseKit is publicly available at the URL we provided in the paper: https://github.com/jgraving/deepposekit/The reviewers should follow the provided instructions for installation in the README file https://github.com/jgraving/deepposekit/blob/master/README.md#installation. Example Jupyter notebooks for how to use the code are provided here: https://github.com/jgraving/deepposekit/tree/master/examples

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jacob M Graving

    Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    For correspondence
    jgraving@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5826-467X
  2. Daniel Chae

    Department of Computer Science, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Hemal Naik

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  4. Liang Li

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  5. Benjamin Koger

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  6. Blair R Costelloe

    Department for Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    No competing interests declared.
  7. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Funding

National Science Foundation (IOS-1355061)

  • Iain D Couzin

Horizon 2020 Framework Programme (Marie Sklodowska-Curie grant agreement No. 748549)

  • Blair R Costelloe

Nvidia (GPU Grant)

  • Blair R Costelloe

Office of Naval Research (N00014-09-1-1074)

  • Iain D Couzin

Office of Naval Research (N00014-14-1-0635)

  • Iain D Couzin

Army Research Office (W911NG-11-1-0385)

  • Iain D Couzin

Army Research Office (W911NF14-1-0431)

  • Iain D Couzin

Deutsche Forschungsgemeinschaft (DFG Centre of Excellence 2117)

  • Iain D Couzin

University of Konstanz (Zukunftskolleg Investment Grant)

  • Blair R Costelloe

The Strukture-und Innovations fonds fur die Forschung of the State of Baden-Wurttemberg

  • Iain D Couzin

Max Planck Society

  • Iain D Couzin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures for collecting the zebra (E. grevyi) dataset were reviewed and approved by Ethikrat, the independent Ethics Council of the Max Planck Society. The zebra dataset was collected with the permission of Kenya's National Commission for Science, Technology and Innovation (NACOSTI/P/17/59088/15489 and NACOSTI/P/18/59088/21567) using drones operated by B.R.C. with the permission of the Kenya Civil Aviation Authority (authorization numbers: KCAA/OPS/2117/4 Vol. 2 (80), KCAA/OPS/2117/4 Vol. 2 (81), KCAA/OPS/2117/5 (86) and KCAA/OPS/2117/5 (87); RPAS Operator Certificate numbers: RPA/TP/0005 AND RPA/TP/000-0009).

Copyright

© 2019, Graving et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 24,599
    views
  • 2,387
    downloads
  • 388
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob M Graving
  2. Daniel Chae
  3. Hemal Naik
  4. Liang Li
  5. Benjamin Koger
  6. Blair R Costelloe
  7. Iain D Couzin
(2019)
DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning
eLife 8:e47994.
https://doi.org/10.7554/eLife.47994

Share this article

https://doi.org/10.7554/eLife.47994

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.