1. Cancer Biology
Download icon

Biomarkers: Improving survival prediction for melanoma

  1. Mykyta Artomov  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Broad Institute, United States
Insight
  • Cited 0
  • Views 766
  • Annotations
Cite this article as: eLife 2019;8:e48145 doi: 10.7554/eLife.48145

Abstract

The survival of patients with cutaneous melanoma can be accurately predicted using just four DNA methylation marks.

Main text

Predicting the risk of outcomes in patients with cancer has traditionally relied on clinical observations: the age of the patient, the size of the tumor, how far it spreads, and how the tumor cells look under the microscope. The accuracy of these clinical evaluations depends on the type of cancer: this approach usually delivers good predictions for cancers that do not spread, but once the cancer metastasizes, the predictive power of this approach declines rapidly.

One of the most challenging cancers to make predictions for is cutaneous melanoma because it progresses rapidly and often spreads into the lymph nodes and other distant organs (Homsi et al., 2005). Cutaneous melanoma is the deadliest skin cancer (Miller and Mihm, 2006), so it is important to be able to manage patient expectations. This means that we need methods other than those based on clinical observations that can predict patient survival.

One alternative approach is based on biomarkers – biological properties within tumors that are associated with melanoma survival. For instance, research showed that several drugs for the treatment of melanoma only targeted tumors that carried a specific mutation in the BRAF gene: the presence of this mutation in a patient is therefore associated with a higher chance of survival due to a positive drug response (Figure 1). Indeed, subsequent research has shown that the higher the mutational 'burden' in the melanoma, the better the response to treatment (Goodman et al., 2017; Figure 1). The interaction between the transcription of genes in the tumor and the immune system is also important: depending on the melanoma tumor type, low levels of transcription of a gene called MITF results in fewer immune cells being attracted to the tumor, which leads to an acceleration in tumor growth (Wiedemann et al., 2019). Taken together, these findings highlight that understanding the biological characteristics of melanoma tumors is critical for predicting outcomes and developing new treatments.

Different ways to predict survival rates for patients with melanoma.

Some patients with a given cancer have higher survival rates than other patients with the same type of cancer: the discovery of signatures for higher (green line in graph) or lower (red line) survival rates would help doctors to manage the expectations of their patients. Survival predictions for cutaneous melanoma were originally based on clinical parameters: tumor location, Breslow thickness (how deep it spreads into the skin), stage (size and distance spread), and grade (how its cells look under the microscope). Advances in cancer genetics led to the discovery of biomarkers (such as the V600E mutation in the BRAF gene) that enabled more accurate predictions. Advances in transcriptomics also led to biomarkers, such as the level of transcription of a gene called MITF. Guo et al. complemented these approaches by analyzing epigenomics data to identify a biomarker based on DNA methylation marks (orange box): the predictive power of the new biomarkers is higher than that of previous biomarkers.

IMAGE CREDIT:Rw251 [CC0 1.0].

To continue the search for better biomarkers researchers went from studying genomics and transcriptomics to studying epigenomic changes such as DNA methylation (Figure 1). Multiple studies have shown that the addition of methyl group to certain DNA nucleotides plays important roles in tumor formation and cancer progression. Furthermore, these methyl markers are easily detectable and remain stable in biological samples, making them clinically useful as biomarkers (Keeley et al., 2013). Now, in eLife, Qiang Wang, Jian-Qun Chen and co-workers at Nanjing University and Shanghai University – including Wenna Guo and Liucun Zhu as joint first authors – report the discovery of a biomarker based on DNA methylation that provides the most accurate predictions of melanoma survival to date (Guo et al., 2019).

Guo et al. studied the methylation profile of 461 cutaneous melanoma patients from the Cancer Genome Atlas Project (International Cancer Genome Consortium et al., 2010). Regression analysis of this dataset revealed 4,454 DNA methylation sites that were associated with overall melanoma survival. Exploring all possible combinations of these markers identified a combination of four methylation marks that could optimally predict the survival of melanoma patients (Figure 1). Intriguingly, two out of the four methylation marks are in close proximity to two genes that are known to be associated with cutaneous melanoma: OCA2, which was found to be genetically varied in melanoma patients (Law et al., 2015), and RAB37, which is a member of an oncogene family.

Understanding the biological basis of the link between these methylation marks and survival will be challenging. DNA methylation could be controlling gene expression: however, the direction of this effect would need to be determined on gene by gene basis. Interestingly, Guo et al. also found that their four-methylation-mark signature has similarities to a signature used in cancer immunotherapy. The predictive power of the new biomarker is also higher than that of other biomarkers, including the five-DNA methylation signature that can predict the immune response to tumors (Jeschke et al., 2017).

Improvements in our ability to predict disease outcome are valuable in their own right. Moreover, a better understanding of the biology responsible for the correlations observed between the methylation signature, gene expression and immunotherapy targets has the potential to contribute to the global efforts to find a cure for melanoma.

References

  1. 1
  2. 2
  3. 3
  4. 4
    International network of cancer genome projects
    1. International Cancer Genome Consortium
    2. TJ Hudson
    3. W Anderson
    4. A Artez
    5. AD Barker
    6. C Bell
    7. RR Bernabé
    8. MK Bhan
    9. F Calvo
    10. I Eerola
    11. DS Gerhard
    12. A Guttmacher
    13. M Guyer
    14. FM Hemsley
    15. JL Jennings
    16. D Kerr
    17. P Klatt
    18. P Kolar
    19. J Kusada
    20. DP Lane
    21. F Laplace
    22. L Youyong
    23. G Nettekoven
    24. B Ozenberger
    25. J Peterson
    26. TS Rao
    27. J Remacle
    28. AJ Schafer
    29. T Shibata
    30. MR Stratton
    31. JG Vockley
    32. K Watanabe
    33. H Yang
    34. MM Yuen
    35. BM Knoppers
    36. M Bobrow
    37. A Cambon-Thomsen
    38. LG Dressler
    39. SO Dyke
    40. Y Joly
    41. K Kato
    42. KL Kennedy
    43. P Nicolás
    44. MJ Parker
    45. E Rial-Sebbag
    46. CM Romeo-Casabona
    47. KM Shaw
    48. S Wallace
    49. GL Wiesner
    50. N Zeps
    51. P Lichter
    52. AV Biankin
    53. C Chabannon
    54. L Chin
    55. B Clément
    56. E de Alava
    57. F Degos
    58. ML Ferguson
    59. P Geary
    60. DN Hayes
    61. TJ Hudson
    62. AL Johns
    63. A Kasprzyk
    64. H Nakagawa
    65. R Penny
    66. MA Piris
    67. R Sarin
    68. A Scarpa
    69. T Shibata
    70. M van de Vijver
    71. PA Futreal
    72. H Aburatani
    73. M Bayés
    74. DD Botwell
    75. PJ Campbell
    76. X Estivill
    77. DS Gerhard
    78. SM Grimmond
    79. I Gut
    80. M Hirst
    81. C López-Otín
    82. P Majumder
    83. M Marra
    84. JD McPherson
    85. H Nakagawa
    86. Z Ning
    87. XS Puente
    88. Y Ruan
    89. T Shibata
    90. MR Stratton
    91. HG Stunnenberg
    92. H Swerdlow
    93. VE Velculescu
    94. RK Wilson
    95. HH Xue
    96. L Yang
    97. PT Spellman
    98. GD Bader
    99. PC Boutros
    100. PJ Campbell
    101. P Flicek
    102. G Getz
    103. R Guigó
    104. G Guo
    105. D Haussler
    106. S Heath
    107. TJ Hubbard
    108. T Jiang
    109. SM Jones
    110. Q Li
    111. N López-Bigas
    112. R Luo
    113. L Muthuswamy
    114. BF Ouellette
    115. JV Pearson
    116. XS Puente
    117. V Quesada
    118. BJ Raphael
    119. C Sander
    120. T Shibata
    121. TP Speed
    122. LD Stein
    123. JM Stuart
    124. JW Teague
    125. Y Totoki
    126. T Tsunoda
    127. A Valencia
    128. DA Wheeler
    129. H Wu
    130. S Zhao
    131. G Zhou
    132. LD Stein
    133. R Guigó
    134. TJ Hubbard
    135. Y Joly
    136. SM Jones
    137. A Kasprzyk
    138. M Lathrop
    139. N López-Bigas
    140. BF Ouellette
    141. PT Spellman
    142. JW Teague
    143. G Thomas
    144. A Valencia
    145. T Yoshida
    146. KL Kennedy
    147. M Axton
    148. SO Dyke
    149. PA Futreal
    150. DS Gerhard
    151. C Gunter
    152. M Guyer
    153. TJ Hudson
    154. JD McPherson
    155. LJ Miller
    156. B Ozenberger
    157. KM Shaw
    158. A Kasprzyk
    159. LD Stein
    160. J Zhang
    161. SA Haider
    162. J Wang
    163. CK Yung
    164. A Cros
    165. A Cross
    166. Y Liang
    167. S Gnaneshan
    168. J Guberman
    169. J Hsu
    170. M Bobrow
    171. DR Chalmers
    172. KW Hasel
    173. Y Joly
    174. TS Kaan
    175. KL Kennedy
    176. BM Knoppers
    177. WW Lowrance
    178. T Masui
    179. P Nicolás
    180. E Rial-Sebbag
    181. LL Rodriguez
    182. C Vergely
    183. T Yoshida
    184. SM Grimmond
    185. AV Biankin
    186. DD Bowtell
    187. N Cloonan
    188. A deFazio
    189. JR Eshleman
    190. D Etemadmoghadam
    191. BB Gardiner
    192. BA Gardiner
    193. JG Kench
    194. A Scarpa
    195. RL Sutherland
    196. MA Tempero
    197. NJ Waddell
    198. PJ Wilson
    199. JD McPherson
    200. S Gallinger
    201. MS Tsao
    202. PA Shaw
    203. GM Petersen
    204. D Mukhopadhyay
    205. L Chin
    206. RA DePinho
    207. S Thayer
    208. L Muthuswamy
    209. K Shazand
    210. T Beck
    211. M Sam
    212. L Timms
    213. V Ballin
    214. Y Lu
    215. J Ji
    216. X Zhang
    217. F Chen
    218. X Hu
    219. G Zhou
    220. Q Yang
    221. G Tian
    222. L Zhang
    223. X Xing
    224. X Li
    225. Z Zhu
    226. Y Yu
    227. J Yu
    228. H Yang
    229. M Lathrop
    230. J Tost
    231. P Brennan
    232. I Holcatova
    233. D Zaridze
    234. A Brazma
    235. L Egevard
    236. E Prokhortchouk
    237. RE Banks
    238. M Uhlén
    239. A Cambon-Thomsen
    240. J Viksna
    241. F Ponten
    242. K Skryabin
    243. MR Stratton
    244. PA Futreal
    245. E Birney
    246. A Borg
    247. AL Børresen-Dale
    248. C Caldas
    249. JA Foekens
    250. S Martin
    251. JS Reis-Filho
    252. AL Richardson
    253. C Sotiriou
    254. HG Stunnenberg
    255. G Thoms
    256. M van de Vijver
    257. L van't Veer
    258. F Calvo
    259. D Birnbaum
    260. H Blanche
    261. P Boucher
    262. S Boyault
    263. C Chabannon
    264. I Gut
    265. JD Masson-Jacquemier
    266. M Lathrop
    267. I Pauporté
    268. X Pivot
    269. A Vincent-Salomon
    270. E Tabone
    271. C Theillet
    272. G Thomas
    273. J Tost
    274. I Treilleux
    275. F Calvo
    276. P Bioulac-Sage
    277. B Clément
    278. T Decaens
    279. F Degos
    280. D Franco
    281. I Gut
    282. M Gut
    283. S Heath
    284. M Lathrop
    285. D Samuel
    286. G Thomas
    287. J Zucman-Rossi
    288. P Lichter
    289. R Eils
    290. B Brors
    291. JO Korbel
    292. A Korshunov
    293. P Landgraf
    294. H Lehrach
    295. S Pfister
    296. B Radlwimmer
    297. G Reifenberger
    298. MD Taylor
    299. C von Kalle
    300. PP Majumder
    301. R Sarin
    302. TS Rao
    303. MK Bhan
    304. A Scarpa
    305. P Pederzoli
    306. RA Lawlor
    307. M Delledonne
    308. A Bardelli
    309. AV Biankin
    310. SM Grimmond
    311. T Gress
    312. D Klimstra
    313. G Zamboni
    314. T Shibata
    315. Y Nakamura
    316. H Nakagawa
    317. J Kusada
    318. T Tsunoda
    319. S Miyano
    320. H Aburatani
    321. K Kato
    322. A Fujimoto
    323. T Yoshida
    324. E Campo
    325. C López-Otín
    326. X Estivill
    327. R Guigó
    328. S de Sanjosé
    329. MA Piris
    330. E Montserrat
    331. M González-Díaz
    332. XS Puente
    333. P Jares
    334. A Valencia
    335. H Himmelbauer
    336. H Himmelbaue
    337. V Quesada
    338. S Bea
    339. MR Stratton
    340. PA Futreal
    341. PJ Campbell
    342. A Vincent-Salomon
    343. AL Richardson
    344. JS Reis-Filho
    345. M van de Vijver
    346. G Thomas
    347. JD Masson-Jacquemier
    348. S Aparicio
    349. A Borg
    350. AL Børresen-Dale
    351. C Caldas
    352. JA Foekens
    353. HG Stunnenberg
    354. L van't Veer
    355. DF Easton
    356. PT Spellman
    357. S Martin
    358. AD Barker
    359. L Chin
    360. FS Collins
    361. CC Compton
    362. ML Ferguson
    363. DS Gerhard
    364. G Getz
    365. C Gunter
    366. A Guttmacher
    367. M Guyer
    368. DN Hayes
    369. ES Lander
    370. B Ozenberger
    371. R Penny
    372. J Peterson
    373. C Sander
    374. KM Shaw
    375. TP Speed
    376. PT Spellman
    377. JG Vockley
    378. DA Wheeler
    379. RK Wilson
    380. TJ Hudson
    381. L Chin
    382. BM Knoppers
    383. ES Lander
    384. P Lichter
    385. LD Stein
    386. MR Stratton
    387. W Anderson
    388. AD Barker
    389. C Bell
    390. M Bobrow
    391. W Burke
    392. FS Collins
    393. CC Compton
    394. RA DePinho
    395. DF Easton
    396. PA Futreal
    397. DS Gerhard
    398. AR Green
    399. M Guyer
    400. SR Hamilton
    401. TJ Hubbard
    402. OP Kallioniemi
    403. KL Kennedy
    404. TJ Ley
    405. ET Liu
    406. Y Lu
    407. P Majumder
    408. M Marra
    409. B Ozenberger
    410. J Peterson
    411. AJ Schafer
    412. PT Spellman
    413. HG Stunnenberg
    414. BJ Wainwright
    415. RK Wilson
    416. H Yang
    (2010)
    Nature 464:993–998.
    https://doi.org/10.1038/nature08987
  5. 5
  6. 6
  7. 7
  8. 8
    Melanoma
    1. AJ Miller
    2. MC Mihm
    (2006)
    New England Journal of Medicine 355:51–65.
    https://doi.org/10.1056/NEJMra052166
  9. 9

Article and author information

Author details

  1. Mykyta Artomov

    Mykyta Artomov is in the Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, and the Broad Institute, Cambridge, United States

    For correspondence
    artomov@broadinstitute.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5282-8764

Publication history

  1. Version of Record published: June 6, 2019 (version 1)

Copyright

© 2019, Artomov

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 766
    Page views
  • 74
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Genovese et al.
    Research Advance Updated
    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Mary McMahon et al.
    Research Article Updated