Cell Signaling: Learning from ancestors
A major goal of biological research is to understand the evolutionary histories of organisms and genes. One way to do this is to study biological entities that have become extinct, as this can provide insights into the form and function of their present-day descendants. This is perhaps best exemplified by paleogenetics and paleoproteomics research, where DNA and protein molecules from ancient biological samples are extracted and sequenced to help us better understand the evolutionary relationships between different species. Indeed, the analysis of biomolecules from our hominid ancestors has revealed significant new insights into the origins and diversity of our species (Warren, 2019). Unfortunately, DNA and proteins are degraded over time, which means that this approach can only be applied to evolutionary events from the past one million years.
Many large gene and protein families have evolved through rounds of gene duplication and functional specialization over hundreds of millions of years, which puts them beyond the reach of paleogenetics and paleoproteomics. How, then, might we use evolution to dissect the specialized properties of individual proteins in a family? One approach, called ancestral sequence reconstruction, involves using a statistical model to analyze the sequences of closely-related proteins from different organisms and generate plausible sequences for their ancestors (Hochberg and Thornton, 2017). Actual protein samples based on these sequences can then be made in the laboratory and compared to naturally occurring proteins.
Ancestral sequence reconstruction has been applied to a variety of protein families to understand, at the molecular level, how closely-related proteins have evolved distinct biochemical properties. For example, this method was previously used to examine how individual kinases – enzymes that modify other proteins through a process called phosphorylation – select different target molecules (Howard et al., 2014). Now, in eLife, the same group, led by Liam Holt at New York University (NYU) – including Dajun Sang as first author – reports on the application of ancestral sequence reconstruction to study the evolution of a subfamily of kinases called the MAP kinases (Sang et al., 2019).
Most eukaryotic organisms have hundreds of different protein kinases – humans have over 500 (Manning et al., 2002) – and many kinases need to be phosphorylated themselves in order to become active (Nolen et al., 2004). Some kinases can phosphorylate and activate themselves, through a process called autophosphorylation, while others are dependent on another kinase to be phosphorylated. Many members of the MAP kinase family autophosphorylate, but ERK1 and ERK2 (referred to as ERK1/2) cannot autophosphorylate efficiently. The molecular characteristics that prevent them from doing so were previously unknown.
Sang et al. compiled MAP kinase sequences from a variety of organisms and used ancestral reconstruction to predict the sequences of their common ancestors (Sang et al., 2019). They used standard biochemical techniques to produce proteins with the predicted sequences, and showed that the predicted common ancestor of ERK1/2 could not autophosphorylate efficiently, whereas other ancestral MAP kinases could (Figure 1). Two mutations were found when the sequence of the ERK1/2 common ancestor was compared to the sequences of the other ancestral MAP kinases. One was an amino acid substitution near the spine connecting different regions of the protein; the other was an amino acid deletion that shortened a flexible loop near the catalytic cleft in the kinases. Together, these two mutations suppress the ability of ERK1/2 and their common ancestor to autophosphorylate (Figure 1). Notably, Sang et al. – who are based at Memorial Sloan Kettering, the Icahn School of Medicine and Yale – also showed that reinserting the deleted amino acid in the flexible loop in human ERK1 relieved its dependence on other kinases for its activation in cells.
To explain how these evolutionary sequence alterations resulted in a change in autophosphorylation ability, Sang et al. performed computer simulations of the internal motions of ERK2, with and without the ancestral insertion and substitution. These simulations revealed that the overall flexibility of ERK2 increased when it had ancestor-like sequence features. Sang et al. postulate that increased flexibility in the mutant kinase allows it to more readily adopt a shape compatible with autophosphorylation.
The two mutations reported in the latest work have intriguing implications for kinases in general. Alterations to the flexible loop have been observed in cancer-associated variants of several distantly related kinases (BRAF, HER2, and EGFR; Foster et al., 2016), and mutations at the spine-proximal position are associated with excessive activation and drug resistance in a variety of kinases (Azam et al., 2008). Although ERK1/2 are intimately embedded within oncogenic signaling pathways, mutations at these positions have not been found in those kinases in human cancers. Further analysis of kinase evolutionary history, juxtaposed with cancer genome sequencing, is likely to reveal other conserved mutational hotspots that have facilitated the evolution of divergent properties across protein kinases.
References
-
Activation of tyrosine kinases by mutation of the gatekeeper threonineNature Structural & Molecular Biology 15:1109–1118.https://doi.org/10.1038/nsmb.1486
-
Reconstructing ancient proteins to understand the causes of structure and functionAnnual Review of Biophysics 46:247–269.https://doi.org/10.1146/annurev-biophys-070816-033631
-
Evolution of protein kinase signaling from yeast to manTrends in Biochemical Sciences 27:514–520.https://doi.org/10.1016/S0968-0004(02)02179-5
Article and author information
Author details
Publication history
Copyright
© 2019, Hong and Shah
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,800
- views
-
- 150
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.