Earliest infections predict the age distribution of seasonal influenza A cases

  1. Philip Arevalo  Is a corresponding author
  2. Huong Q McLean
  3. Edward A Belongia
  4. Sarah Cobey
  1. University of Chicago, United States
  2. Marshfield Clinic Research Institute, United States

Abstract

Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to medically attended infection. We ask whether these differences can be partly explained by protection conferred by childhood influenza infection, which has lasting impacts on immune responses to influenza and protection against new influenza A subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies of influenza vaccine effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended infection with that subtype throughout life. This effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that VE varies with both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may improve estimates of age-specific risk and VE in similarly vaccinated populations and thus improve forecasting and vaccination strategies to combat seasonal influenza.

Data availability

Code and data for calculation of imprinting probabilities, vaccination coverage, and model fitting are available on GitHub at https://github.com/cobeylab/FluAImprinting.

The following data sets were generated

Article and author information

Author details

  1. Philip Arevalo

    Ecology and Evolution, University of Chicago, Chicago, United States
    For correspondence
    parevalo@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1237-2314
  2. Huong Q McLean

    Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, United States
    Competing interests
    Huong Q McLean, has received funding from Seqirus, unrelated to this work. The author has no other competing interests to declare.
  3. Edward A Belongia

    Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, United States
    Competing interests
    No competing interests declared.
  4. Sarah Cobey

    Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (DP2AI117921,HHSN272201400005C)

  • Sarah Cobey

National Institutes of Health (F32AI145177-01)

  • Philip Arevalo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Study procedures for the vaccine effectiveness study was approved by the IRB at the Marshfield Clinic Research Institute. Informed consent was obtained from all participants at the time of enrollment into the vaccine effectiveness study. This analysis was subsequently approved by the Marshfield Clinic Research Institute IRB with a waiver of informed consent. The analysis of data was approved by the University of Chicago IRB under protocol number IRB17-1134-CR001.

Reviewing Editor

  1. Ben S Cooper, Mahidol University, Thailand

Publication history

  1. Received: July 10, 2019
  2. Accepted: June 29, 2020
  3. Accepted Manuscript published: July 7, 2020 (version 1)
  4. Version of Record published: July 17, 2020 (version 2)

Copyright

© 2020, Arevalo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,506
    Page views
  • 230
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip Arevalo
  2. Huong Q McLean
  3. Edward A Belongia
  4. Sarah Cobey
(2020)
Earliest infections predict the age distribution of seasonal influenza A cases
eLife 9:e50060.
https://doi.org/10.7554/eLife.50060

Further reading

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Fabrizio Menardo
    Research Article

    Detecting factors associated with transmission is important to understand disease epidemics, and to design effective public health measures. Clustering and terminal branch lengths (TBL) analyses are commonly applied to genomic data sets of Mycobacterium tuberculosis (MTB) to identify sub-populations with increased transmission. Here, I used a simulation-based approach to investigate what epidemiological processes influence the results of clustering and TBL analyses, and whether differences in transmission can be detected with these methods. I simulated MTB epidemics with different dynamics (latency, infectious period, transmission rate, basic reproductive number R0, sampling proportion, sampling period, and molecular clock), and found that all considered factors, except for the length of the infectious period, affect the results of clustering and TBL distributions. I show that standard interpretations of this type of analyses ignore two main caveats: (1) clustering results and TBL depend on many factors that have nothing to do with transmission, (2) clustering results and TBL do not tell anything about whether the epidemic is stable, growing, or shrinking, unless all the additional parameters that influence these metrics are known, or assumed identical between sub-populations. An important consequence is that the optimal SNP threshold for clustering depends on the epidemiological conditions, and that sub-populations with different epidemiological characteristics should not be analyzed with the same threshold. Finally, these results suggest that different clustering rates and TBL distributions, that are found consistently between different MTB lineages, are probably due to intrinsic bacterial factors, and do not indicate necessarily differences in transmission or evolutionary success.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Marta Matuszewska et al.
    Research Article

    Mobile genetic elements (MGEs) are agents of horizontal gene transfer in bacteria, but can also be vertically inherited by daughter cells. Establishing the dynamics that led to contemporary patterns of MGEs in bacterial genomes is central to predicting the emergence and evolution of novel and resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex (CC) 398 is the dominant MRSA in European livestock and a growing cause of human infections. Previous studies have identified three categories of MGEs whose presence or absence distinguishes livestock-associated CC398 from a closely related and less antibiotic-resistant human-associated population. Here, we fully characterise the evolutionary dynamics of these MGEs using a collection of 1180 CC398 genomes, sampled from livestock and humans, over 27 years. We find that the emergence of livestock-associated CC398 coincided with the acquisition of a Tn916 transposon carrying a tetracycline resistance gene, which has been stably inherited for 57 years. This was followed by the acquisition of a type V SCCmec that carries methicillin, tetracycline, and heavy metal resistance genes, which has been maintained for 35 years, with occasional truncations and replacements with type IV SCCmec. In contrast, a class of prophages that carry a human immune evasion gene cluster and that are largely absent from livestock-associated CC398 have been repeatedly gained and lost in both human- and livestock-associated CC398. These contrasting dynamics mean that when livestock-associated MRSA is transmitted to humans, adaptation to the human host outpaces loss of antibiotic resistance. In addition, the stable inheritance of resistance-associated MGEs suggests that the impact of ongoing reductions in antibiotic and zinc oxide use in European farms on livestock-associated MRSA will be slow to be realised.