Overtone focusing in biphonic Tuvan throat singing
Abstract
Khoomei is a unique singing style originating from the Central Asian republic of Tuva. Singers produce two pitches simultaneously: a booming low-frequency rumble alongside a hovering high-pitched whistle-like tone. The biomechanics of this biphonation are not well-understood. Here, we use sound analysis, dynamic magnetic resonance imaging, and vocal tract modeling to demonstrate how biphonation is achieved by modulating vocal tract morphology. Tuvan singers show remarkable control in shaping their vocal tract to narrowly focus the harmonics (or overtones) emanating from their vocal cords. The biphonic sound is a combination of the fundamental pitch and a focused filter state, which is at the higher pitch (1-2 kHz) and formed by merging two formants, thereby greatly enhancing sound-production in a very narrow frequency range. Most importantly, we demonstrate that this biphonation is a phenomenon arising from linear filtering rather than a nonlinear source.
Data availability
All data files (audio and imaging), as well as the relevant analysis software, are available via datadryad.org, https://doi.org/10.5061/dryad.cvdncjt14
-
Overtone focusing in biphonic Tuvan throat singingDryad Digital Repository, https://doi.org/10.5061/dryad.cvdncjt14.
Article and author information
Author details
Funding
Natural Sciences and Engineering Research Council of Canada (RGPIN-430761-2013)
- Christopher Bergevin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Data were collected with approval of the York University Institutional Review Board (IRB protocol to Prof. Jennifer Steeves) This study was approved by the Human Participants Review Board of the Office of Research Ethics at York University (certificate #2017-132) and adhered to the tenets of the Declaration of Helsinki. All participants gave informed written consent and consent to publish prior to their inclusion in the study.
Copyright
© 2020, Bergevin et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 11,277
- views
-
- 480
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
A new study reveals how throat singing is produced.
-
- Neuroscience
- Physics of Living Systems
Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.