Tissue Engineering: Building a better model of the retina

Researchers have combined organ-on-a-chip engineering with the benefits of organoids to make improved models of the human retina.
  1. Milica Radisic  Is a corresponding author
  1. University of Toronto, Canada

A lot of what is known about human cells has come from studying cultures that have been grown in a dish. However, these two-dimensional cultures do not accurately represent the native environment in which our cells grow. Over the past decade both bioengineers and stem cell biologists have created three-dimensional cell cultures that promise to provide a more reliable model for studying human tissue. Bioengineers, for example, have been creating ‘organ-on-a-chip’ devices that precisely control the various cues that act on cells (Huh et al., 2010; Zhang et al., 2016). Using these devices, bioengineers have been able to reproduce the three-dimensional environments of certain tissues, including heart and lung tissues, in a way that captures some aspects of how these organs work (Zhang et al., 2018).

Stem cell biologists, on the other hand, have relied on the inherent ability of stem cells to undergo differentiation in a three-dimensional environment, and to create cell masses called organoids that exhibit some complexity of native organs, including the brain (Lancaster et al., 2013; Lancaster and Knoblich, 2014) and kidney (Phipson et al., 2019). There is no doubt that organoids provide a more faithful representation of native tissue than organ-on-a-chip devices, which typically contain at most two to three different cell types. However, organoids exhibit a lot of variability and this, along with their small size, means they cannot easily be used to study how an organ may respond to different drugs. Although organ-on-a-chip devices are generally considered to be less biologically representative, they do offer a more controlled environment for studying the effects of drugs. Therefore, the natural way forward for both these fields would be to combine the advantages of organoids and organ-on-a-chip devices in a single system (Takebe et al., 2017).

Human vision is particularly difficult to study using animal models, since the fundamental characteristics of how we see are different to most animals. This has motivated researchers to use models of the human retina that have been explanted post-mortem, but these can display a lot of donor-donor variability and various disease-related conditions. Recently, researchers have used pluripotent stem cells to generate an organoid of the human retina that has a similar structure to the real thing (Zhong et al., 2014). However, for these models to accurately represent the in vivo environment of the retina, they must also have a blood supply that provides the retina with nutrients. Now, in eLife, Peter Loskill (Fraunhofer Institute and University of Tübingen), Stefan Liebau (University of Tübingen) and colleagues – including Kevin Achberger, Christopher Probst and Jasmin Haderspeck – report the creation of a retina-on-a chip device that reproduces the vascular supply to the retina in vitro using specially designed micro-channels (Achberger et al., 2019).

To create the device, Achberger et al. combined organoids of the human retina with retinal pigment epithelial (RPE) cells, which form part of the complex environment of the human retina in vivo. Each chip has four compartments designed to hold a single organoid, which sit above a porous membrane that separates the retina from the vasculature-like compartment below (Figure 1): First, RPE cells were seeded onto the membrane, followed by the organoids which had been cultured for 180 days prior to plating to ensure they had reached maturity. This design allows small molecules, nutrients, and proteins from the media in the vascular-like channels to diffuse across the porous membrane where they can be transported from the retinal epithelium into the organoids, similar to how transport occurs in vivo. Secreted factors are then carried away from the retina tissue via the flow of fluids which are confined to the vasculature-like channels below.

Retina-on-a-chip combines the benefits of organoids and organ-on-a-chip engineering.

Each chip has a vascular-like compartment (red) which is separated from the four organoid compartments above by a porous membrane. Schematic diagram (right) showing the various layers of cells in the retinal organoid (top) and the retinal pigment epithelium cells (RPE; yellow).

Image credit: Achberger et al. (CC BY 4.0)

This retina-on-a-chip device generated by Achberger et al. is the first tissue model to reproduce the specific layer configuration of seven different cell types in the human retina. The organoids seeded into the device expressed markers of major retinal cells such as ganglion cells, bipolar cells, horizontal cells, amacrine cells, Müller glia and photoreceptors. Notably, Achberger et al. showed that RPE cells directly interacted with the outer segment of photoreceptors in the retinal organoid through phagocytosis. They also observed that cells in the organoid formed specific layers that were similar to how retinal cells are structurally organized in vivo (Figure 1). Achberger et al. also found that these devices could reproduce the visual side-effects of the anti-malaria drug choroquine and the antibiotic gentamicin, indicating that these retina models could be used for drug testing.

The retina is an especially difficult organ to model due to the large number of different cell types involved and its complex structure, so the device created by Achberger et al. is at the very forefront of the organ-on-a-chip field. Further studies should focus on: enhancing the throughput of device production and cell cultivation, automating the plating of cells and measurements taken, and eliminating the use of drug absorbing materials. The new device promises to decrease the reliance on animal models in retinal drug testing and could be used to study the effects of new drugs on human retinas before starting clinical trials. This retina model could therefore have a huge impact on drug discovery and safety testing.

References

Article and author information

Author details

  1. Milica Radisic

    Milica Radisic is in the Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Toronto General Research Institute, University of Toronto, Toronto, Canada

    For correspondence
    m.radisic@utoronto.ca
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1249-4135

Publication history

  1. Version of Record published: October 4, 2019 (version 1)

Copyright

© 2019, Radisic

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,985
    Page views
  • 207
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milica Radisic
(2019)
Tissue Engineering: Building a better model of the retina
eLife 8:e51183.
https://doi.org/10.7554/eLife.51183

Further reading

    1. Medicine
    2. Stem Cells and Regenerative Medicine
    Thiruma V Arumugam, Asfa Alli-Shaik ... Jayantha Gunaratne
    Research Article

    Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart’s function and its vulnerability to injury and disease.

    1. Medicine
    Xiaoyan Yang, Hsiang-Chun Chang ... Hossein Ardehali
    Research Article

    Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of ischemic injury and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 (Sirt2-/-) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2-/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitor reduced cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in cardiac response to injury and the progression of cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy and injury by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of these disorders.