The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer

  1. Ling-Shih Chang
  2. Minseong Kim
  3. Andrey Glinka
  4. Carmen Reinhard
  5. Christof Niehrs  Is a corresponding author
  1. Deutsches Krebsforschungszentrum (DKFZ), Germany

Abstract

A hallmark of Spemann organizer function is its expression of Wnt antagonists that regulate axial embryonic patterning. Here we identify the tumor suppressor Protein tyrosine phosphatase receptor-type kappa (Ptprk), as a Wnt inhibitor of the Spemann organizer. We show that PTPRK acts via the transmembrane E3 ubiquitin ligase ZNRF3, a negative regulator of Wnt signaling promoting Wnt receptor degradation, which is also expressed in the organizer. Deficiency of ptprk increases Wnt signaling, leading to reduced expression of Spemann organizer effector genes and inducing head and axial defects. We identify a '4Y' endocytic signal in ZNRF3, which Ptprk maintains unphosphorylated to promote Wnt receptor depletion. Our discovery of PTPRK as a negative regulator of Wnt receptor turnover provides a rationale for its tumor suppressive function and reveals that in PTPRK-RSPO3 recurrent cancer fusions both fusion partners, in fact, encode ZNRF3 regulators.

Data availability

All data generated or analysed during this study are included in the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Ling-Shih Chang

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Minseong Kim

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey Glinka

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Reinhard

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christof Niehrs

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    For correspondence
    niehrs@dkfz-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9561-9302

Funding

Deutsche Forschungsgemeinschaft (CRC1324)

  • Ling-Shih Chang
  • Minseong Kim
  • Andrey Glinka
  • Carmen Reinhard
  • Christof Niehrs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All Xenopus experiments were approved by the state review board of Baden-Wuerttemberg , Germany (License number: G-13/186 & G-141/18) and performed according to the federal and institutional guideline.

Copyright

© 2020, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,826
    views
  • 412
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ling-Shih Chang
  2. Minseong Kim
  3. Andrey Glinka
  4. Carmen Reinhard
  5. Christof Niehrs
(2020)
The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer
eLife 9:e51248.
https://doi.org/10.7554/eLife.51248

Share this article

https://doi.org/10.7554/eLife.51248