A phenotypic screening platform utilising human spermatozoa identifies compounds with contraceptive activity

  1. Franz S Gruber
  2. Zoe C johnston
  3. Christopher LR Barratt  Is a corresponding author
  4. Paul D Andrews
  1. University of Dundee, United Kingdom

Abstract

There is an urgent need to develop new methods for male contraception, however a major barrier to drug discovery has been the lack of validated targets and the absence of an effective high-throughput phenotypic screening system. To address this deficit, we developed a fully-automated robotic screening platform that provided quantitative evaluation of compound activity against two key attributes of human sperm function: motility and acrosome reaction. In order to accelerate contraceptive development, we screened the comprehensive collection of 12,000 molecules that make up the ReFRAME repurposing library, comprising nearly all the small molecules that have been approved or have undergone clinical development, or have significant preclinical profiling. We identified several compounds that potently inhibit motility representing either novel drug candidates or routes to target identification. This platform will now allow for major drug discovery programmes that address the critical gap in the contraceptive portfolio as well as uncover novel human sperm biology.

Data availability

Full data is available. Large files have been deposited :https://datadryad.org/stash/share/06d75FZ6GiPmme3HnKnkyTFbgKJ2mV0UVRaN-gVKoVE.

The following data sets were generated

Article and author information

Author details

  1. Franz S Gruber

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
  2. Zoe C johnston

    Division of Systems Medicine, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
  3. Christopher LR Barratt

    Division of Systems Medicine, University of Dundee, Dundee, United Kingdom
    For correspondence
    c.barratt@dundee.ac.uk
    Competing interests
    Christopher LR Barratt, Editor for RBMO, has received lecturing fees from Merck, Pharmasure and Ferring and was on the Scientific Advisory Panel for Ohana BioSciences.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0062-9979
  4. Paul D Andrews

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7699-5604

Funding

Bill and Melinda Gates Foundation (OPP1160989)

  • Zoe C johnston

Bill and Melinda Gates Foundation (OPP1203050)

  • Franz S Gruber
  • Zoe C johnston
  • Christopher LR Barratt
  • Paul D Andrews

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The Funders did facilitate using the REFRAME library

Ethics

Human subjects: Written consent was obtained from each donor in accordance with the Human Fertilization and Embryology Authority (HFEA) Code of Practice (version 8) under local ethical approval (13/ES/0091) from the Tayside Committee of Medical Research Ethics B.

Copyright

© 2020, Gruber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,522
    views
  • 473
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Franz S Gruber
  2. Zoe C johnston
  3. Christopher LR Barratt
  4. Paul D Andrews
(2020)
A phenotypic screening platform utilising human spermatozoa identifies compounds with contraceptive activity
eLife 9:e51739.
https://doi.org/10.7554/eLife.51739

Share this article

https://doi.org/10.7554/eLife.51739

Further reading

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.