Contraception: Stopping sperm in their tracks

An automated high-throughput platform can screen for molecules that change the motility of sperm cells and their ability to fertilize.
  1. Luke L McGoldrick
  2. Jean-Ju Chung  Is a corresponding author
  1. Department of Cellular and Molecular Physiology, Yale School of Medicine, United States
  2. Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, United States

From 2010 to 2014, about 44% of pregnancies worldwide were unplanned, and over half of these ended in abortion in both developed and developing countries (Bearak et al., 2018). Moreover, these terminations frequently result in the death of women in some regions of the world (Ganatra et al., 2017; WHO, 2011). These statistics confirm the need to make effective family planning more widely available to those who want to adopt it, as this brings positive outcomes to women, families, countries and the environment (Starbird et al., 2016).

Precursors to the modern condom were used in ancient Egypt, and hormone-based female oral contraceptives have been used since the middle of the twentieth century (Khan et al., 2013; Dhont, 2010). Today, most contraceptives are for use by women. Traditional male options include condoms, which are only partially effective, and vasectomies, which men may be hesitant to get because they cannot always be reversed (Manetti and Honig, 2010; Gava and Meriggiola, 2019). There is therefore a need for new male contraceptives, with sperm being an obvious target.

Sperm cells are equipped with a tail-like structure that allows them to be motile and to travel through the female reproductive tract to reach the egg. There, they undergo the acrosome reaction: this involves the sperm cell releasing digestive enzymes that allow it to come into close contact and fuse with an egg. Successful fertilization requires both motility and a successful acrosome reaction, so targeting and disrupting these processes is a good strategy to develop effective male contraceptives.

Now, in eLife, Franz Gruber, Zoe Johnston, Christopher Barratt and Paul Andrews at the University of Dundee report having developed a new screening platform to evaluate the effects of small molecules on the motility of sperm cells and their ability to go through the acrosome reaction (Gruber et al., 2020). The team used a collection of about 12,000 clinical or preclinical small molecules for which human safety data are already available.

To evaluate the effect these molecules have on sperm motility, a robotics system was used to incubate each small molecule with separate batches of sperm for 10 minutes (Figure 1); the cells were then imaged using a camera with a high frame rate to capture motion. In total, 63 candidates were identified as reducing motility by 15% or more, with 29 being confirmed when retested. Some of the hits were promising, such as Disulfiram and KF-4939. Disulfiram has been used to treat alcohol dependency and is known to dampen sperm motility (Lal et al., 2016). KF-4939 is thought to inhibit platelet aggregation factors, which have already been used in male infertility treatments to improve sperm motility (Roudebush et al., 2004). The experiment also highlighted a large number of small molecules that increase, rather than decrease, sperm motility: these molecules need to be investigated further as they could be used to treat infertility.

Automated targeting of sperm motility and acrosome reaction with small molecules.

Sperm are robotically allocated into wells (~10,000 cells/well) in a 384-well plate (top left); each well contains a different small molecule at a concentration of ~6 μM. The insets show KF-4939, an anti-platelet agent, binding to sperm cells. After incubation with the small molecules, sperm motility is imaged and assessed (middle left). Subsequently, the same sperm are mixed with two tags, peanut agglutinin (PNA; green) and propidium iodide (Pi; red), that emit fluorescence when attached to cells. Sperm were analyzed with a technique called flow cytometry (top right): PNA binding to a sperm cell indicates that the cell has undergone the acrosome reaction, while Pi only binds to dead cells. Most sperm cells do not bind to PNA or Pi, some bind to one but not the other, and some bind to both (bottom right).

To improve the efficiency of the screen, the same cells that had been assessed for motility were also examined for the acrosome reaction. Two fluorescent tags, called peanut agglutinin and propidium iodide, helped to detect sperm cells that had gone through the reaction after being exposed to the small molecules. Peanut agglutinin only binds to the heads of sperm cells that have undergone the acrosome reaction, and propidium iodide exclusively attaches to dead cells. An automated technique called flow cytometry was used to record whether the tags were bound to a given cell, therefore measuring the percentage of live cells that had undergone the acrosome reaction after being exposed to the small molecules. However, all nine hits proved to be false positives as the small molecules themselves were fluorescent, highlighting a need to carry on such screenings while being wary of artefacts.

The high-throughput screening platform developed by Gruber et al. has the potential to make important contributions to the search for contraceptives and male infertility drugs. This work only examined one collection of molecules, and two sperm parameters, motility and acrosome reaction. Going forward, it would be interesting to apply this platform to target other aspects of sperm biology that are critical for fertilization, such as hyperactivated motility (when sperm cells vigorously and asymmetrically wag their tail-like structures to enter the egg), or the binding of sperm cells to specific egg proteins.

References

    1. Dhont M
    (2010) History of oral contraception
    The European Journal of Contraception & Reproductive Health Care 15:S12–S18.
    https://doi.org/10.3109/13625187.2010.513071
    1. Gava G
    2. Meriggiola MC
    (2019) Update on male hormonal contraception
    Therapeutic Advances in Endocrinology and Metabolism 10:204201881983484.
    https://doi.org/10.1177/2042018819834846

Article and author information

Author details

  1. Luke L McGoldrick

    Luke L McGoldrick is in the Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8310-7502
  2. Jean-Ju Chung

    Jean-Ju Chung is in the Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States

    For correspondence
    jean-ju.chung@yale.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8018-1355

Publication history

  1. Version of Record published:

Copyright

© 2020, McGoldrick and Chung

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,102
    views
  • 135
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luke L McGoldrick
  2. Jean-Ju Chung
(2020)
Contraception: Stopping sperm in their tracks
eLife 9:e55396.
https://doi.org/10.7554/eLife.55396

Further reading

    1. Developmental Biology
    Alexander S Campbell, Martin Minařík ... Clare VH Baker
    Research Article Updated

    The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.