Attacks on genetic privacy via uploads to genealogical databases
Abstract
Direct-to-consumer (DTC) genetics services are increasingly popular, with tens of millions of customers. Several DTC genealogy services allow users to upload genetic data to search for relatives, identified as people with genomes that share identical by state (IBS) regions. Here, we describe methods by which an adversary can learn database genotypes by uploading multiple datasets. For example, an adversary who uploads approximately 900 genomes could recover at least one allele at SNP sites across up to 82% of the genome of a median person of European ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100 falsified uploads can reveal enough genetic information to allow genome-wide genetic imputation. We provide a proof-of-concept demonstration in the GEDmatch database, and we suggest countermeasures that will prevent the exploits we describe.
Data availability
The dataset used here was assembled from publicly available datasets. The combined dataset has been deposited in Dryad at https://doi.org/10.25338/B8X619, and scripts for assembling and analyzing the data are available at https://github.com/mdedge/IBS_privacy.
-
1000 Genomes Phase 3 data1000 Genomes Project.
Article and author information
Author details
Funding
National Institutes of Health (GM108779)
- Graham Coop
National Institutes of Health (GM130050)
- Michael D Edge
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Magnus Nordborg, Austrian Academy of Sciences, Austria
Version history
- Received: September 12, 2019
- Accepted: December 23, 2019
- Accepted Manuscript published: January 7, 2020 (version 1)
- Version of Record published: January 30, 2020 (version 2)
Copyright
© 2020, Edge & Coop
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,445
- Page views
-
- 574
- Downloads
-
- 18
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
If you've uploaded your DNA on genealogy databases, it may be at risk.
-
- Biochemistry and Chemical Biology
- Evolutionary Biology
Evolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either two proteins with different functions (IbpA and IbpB) or a secondarily single sHsp that performs both functions in an equally efficient way. Secondarily single sHsp evolved from IbpA, an ancestor specialized in strong substrate binding. Evolution of an intermolecular binding site drove the alteration of substrate binding properties, as well as the formation of higher-order oligomers. Upon two mutations in the α-crystallin domain, secondarily single sHsp interacts with aggregated substrates less tightly. Paradoxically, less efficient binding positively influences the ability of sHsp to stimulate substrate refolding, since the dissociation of sHps from aggregates is required to initiate Hsp70-Hsp100-dependent substrate refolding. After the loss of a partner, IbpA took over its role in facilitating the sHsp dissociation from an aggregate by weakening the interaction with the substrate, which became beneficial for the refolding process. We show that the same two amino acids introduced in modern-day systems define whether the IbpA acts as a single sHsp or obligatorily cooperates with an IbpB partner. Our discoveries illuminate how one sequence has evolved to encode functions previously performed by two distinct proteins.