Attacks on genetic privacy via uploads to genealogical databases

  1. Michael D Edge  Is a corresponding author
  2. Graham Coop  Is a corresponding author
  1. University of California, Davis, United States

Abstract

Direct-to-consumer (DTC) genetics services are increasingly popular, with tens of millions of customers. Several DTC genealogy services allow users to upload genetic data to search for relatives, identified as people with genomes that share identical by state (IBS) regions. Here, we describe methods by which an adversary can learn database genotypes by uploading multiple datasets. For example, an adversary who uploads approximately 900 genomes could recover at least one allele at SNP sites across up to 82% of the genome of a median person of European ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100 falsified uploads can reveal enough genetic information to allow genome-wide genetic imputation. We provide a proof-of-concept demonstration in the GEDmatch database, and we suggest countermeasures that will prevent the exploits we describe.

Data availability

The dataset used here was assembled from publicly available datasets. The combined dataset has been deposited in Dryad at https://doi.org/10.25338/B8X619, and scripts for assembling and analyzing the data are available at https://github.com/mdedge/IBS_privacy.

The following previously published data sets were used

Article and author information

Author details

  1. Michael D Edge

    Center for Population Biology, University of California, Davis, Davis, United States
    For correspondence
    mdedge@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8773-2906
  2. Graham Coop

    Center for Population Biology, University of California, Davis, Davis, United States
    For correspondence
    gmcoop@ucdavis.edu
    Competing interests
    Graham Coop, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-0302

Funding

National Institutes of Health (GM108779)

  • Graham Coop

National Institutes of Health (GM130050)

  • Michael D Edge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Edge & Coop

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,925
    views
  • 632
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Edge
  2. Graham Coop
(2020)
Attacks on genetic privacy via uploads to genealogical databases
eLife 9:e51810.
https://doi.org/10.7554/eLife.51810

Share this article

https://doi.org/10.7554/eLife.51810

Further reading

  1. If you've uploaded your DNA on genealogy databases, it may be at risk.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Gunther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.