Attacks on genetic privacy via uploads to genealogical databases

  1. Michael D Edge  Is a corresponding author
  2. Graham Coop  Is a corresponding author
  1. University of California, Davis, United States

Abstract

Direct-to-consumer (DTC) genetics services are increasingly popular, with tens of millions of customers. Several DTC genealogy services allow users to upload genetic data to search for relatives, identified as people with genomes that share identical by state (IBS) regions. Here, we describe methods by which an adversary can learn database genotypes by uploading multiple datasets. For example, an adversary who uploads approximately 900 genomes could recover at least one allele at SNP sites across up to 82% of the genome of a median person of European ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100 falsified uploads can reveal enough genetic information to allow genome-wide genetic imputation. We provide a proof-of-concept demonstration in the GEDmatch database, and we suggest countermeasures that will prevent the exploits we describe.

Data availability

The dataset used here was assembled from publicly available datasets. The combined dataset has been deposited in Dryad at https://doi.org/10.25338/B8X619, and scripts for assembling and analyzing the data are available at https://github.com/mdedge/IBS_privacy.

The following previously published data sets were used

Article and author information

Author details

  1. Michael D Edge

    Center for Population Biology, University of California, Davis, Davis, United States
    For correspondence
    mdedge@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8773-2906
  2. Graham Coop

    Center for Population Biology, University of California, Davis, Davis, United States
    For correspondence
    gmcoop@ucdavis.edu
    Competing interests
    Graham Coop, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-0302

Funding

National Institutes of Health (GM108779)

  • Graham Coop

National Institutes of Health (GM130050)

  • Michael D Edge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Magnus Nordborg, Austrian Academy of Sciences, Austria

Version history

  1. Received: September 12, 2019
  2. Accepted: December 23, 2019
  3. Accepted Manuscript published: January 7, 2020 (version 1)
  4. Version of Record published: January 30, 2020 (version 2)

Copyright

© 2020, Edge & Coop

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,573
    Page views
  • 591
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Edge
  2. Graham Coop
(2020)
Attacks on genetic privacy via uploads to genealogical databases
eLife 9:e51810.
https://doi.org/10.7554/eLife.51810

Share this article

https://doi.org/10.7554/eLife.51810

Further reading

  1. If you've uploaded your DNA on genealogy databases, it may be at risk.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.