Attacks on genetic privacy via uploads to genealogical databases
Abstract
Direct-to-consumer (DTC) genetics services are increasingly popular, with tens of millions of customers. Several DTC genealogy services allow users to upload genetic data to search for relatives, identified as people with genomes that share identical by state (IBS) regions. Here, we describe methods by which an adversary can learn database genotypes by uploading multiple datasets. For example, an adversary who uploads approximately 900 genomes could recover at least one allele at SNP sites across up to 82% of the genome of a median person of European ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100 falsified uploads can reveal enough genetic information to allow genome-wide genetic imputation. We provide a proof-of-concept demonstration in the GEDmatch database, and we suggest countermeasures that will prevent the exploits we describe.
Data availability
The dataset used here was assembled from publicly available datasets. The combined dataset has been deposited in Dryad at https://doi.org/10.25338/B8X619, and scripts for assembling and analyzing the data are available at https://github.com/mdedge/IBS_privacy.
-
1000 Genomes Phase 3 data1000 Genomes Project.
Article and author information
Author details
Funding
National Institutes of Health (GM108779)
- Graham Coop
National Institutes of Health (GM130050)
- Michael D Edge
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Edge & Coop
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 629
- downloads
-
- 36
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
If you've uploaded your DNA on genealogy databases, it may be at risk.
-
- Ecology
- Evolutionary Biology
While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.