1. Cell Biology
  2. Microbiology and Infectious Disease
Download icon

Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages

  1. Maeva Dupont
  2. Shanti Souriant
  3. Luciana Balboa
  4. Thien-Phong Vu Manh
  5. Karine Pingris
  6. Stella Rousset
  7. Céline Cougoule
  8. Yoann Rombouts
  9. Renaud Poincloux
  10. Myriam Ben Neji
  11. Carolina Allers
  12. Deepak Kaushal
  13. Marcelo J Kuroda
  14. Susana Benet
  15. Javier Martinez-Picado
  16. Nuria Izquierdo-Useros
  17. Maria del Carmen Sasiain
  18. Isabelle Maridonneau-Parini
  19. Olivier Neyrolles
  20. Christel Vérollet  Is a corresponding author
  21. Geanncarlo Lugo-Villarino  Is a corresponding author
  1. Institute de Pharmacologie et de Biologie Structurale (IPBS), France
  2. Academia Nacional de Medicina/Conicet, Argentina
  3. Aix Marseille University, France
  4. Tulane National Primate Research Center, United States
  5. Tulane University School of Medicine, United States
  6. University of California, Davis, United States
  7. IrsiCaixa AIDS Research Institute, Spain
  8. Universitat Autònoma de Barcelona, Spain
  9. AIDS Research Institute IrsiCaixa, Spain
  10. Université de Toulouse, CNRS, France
Research Article
  • Cited 12
  • Views 2,081
  • Annotations
Cite this article as: eLife 2020;9:e52535 doi: 10.7554/eLife.52535

Abstract

While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor. Siglec-1 expression depends on Mtb-induced production of type I interferon (IFN-I). In co-infected non-human primates, Siglec-1 is highly expressed by alveolar macrophages, whose abundance correlates with pathology and activation of IFN-I/STAT1 pathway. Siglec-1 localizes mainly on microtubule-containing TNT that are long and carry HIV-1 cargo. Siglec-1 depletion decreases TNT length, diminishes HIV-1 capture and cell-to-cell transfer, and abrogates the exacerbation of HIV-1 infection induced by Mtb. Altogether, we uncover a deleterious role for Siglec-1 in TB-HIV-1 co-infection and opens new avenues to understand TNT biology.

Data availability

The raw data for the transcriptome analysis in this manuscript was made available through the public by a deposit to GEO under the accession code GSE139511.

The following data sets were generated

Article and author information

Author details

  1. Maeva Dupont

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Shanti Souriant

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Luciana Balboa

    IMEX, Academia Nacional de Medicina/Conicet, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  4. Thien-Phong Vu Manh

    CIML, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Karine Pingris

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Stella Rousset

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Céline Cougoule

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Yoann Rombouts

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Renaud Poincloux

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Myriam Ben Neji

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Carolina Allers

    Microbiology and Immunology, Tulane National Primate Research Center, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Deepak Kaushal

    Tulane National Primate Research Center, Tulane University School of Medicine, Covington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcelo J Kuroda

    Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Susana Benet

    Retrovirology, IrsiCaixa AIDS Research Institute, Badalona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  15. Javier Martinez-Picado

    AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  16. Nuria Izquierdo-Useros

    Retrovirology, AIDS Research Institute IrsiCaixa, Badalona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  17. Maria del Carmen Sasiain

    IMEX, Academia Nacional de Medicina/Conicet, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  18. Isabelle Maridonneau-Parini

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  19. Olivier Neyrolles

    Université de Toulouse, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  20. Christel Vérollet

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    For correspondence
    verollet@ipbs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1079-9085
  21. Geanncarlo Lugo-Villarino

    Tuberculosis and Infection Biology (TBIB), Institute de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
    For correspondence
    geanncarlo.lugo@ipbs.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANRS2014-049)

  • Olivier Neyrolles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Non‑Human Primate (NHP) samplesAll animal procedures were approved by the Institutional Animal Care and Use Committee of Tulane University, New Orleans, LA and were performed at the Tulane TNPRC, and under approval from IACUC (project numbers P3733, P3794, P3373 and P3628). They were performed in strict accordance with NIH guidelines.

Human subjects: Human SubjectsMonocytes from healthy subjects were provided by Etablissement Français du Sang (EFS), Toulouse, France, under contract 21/PLER/TOU/IPBS01/20130042. According to articles L12434 and R124361 of the French Public Health Code, the contract was approved by the French Ministry of Science and Technology (agreement number AC 2009921). Written informed consents were obtained from the donors before sample collection.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: October 7, 2019
  2. Accepted: March 30, 2020
  3. Accepted Manuscript published: March 30, 2020 (version 1)
  4. Version of Record published: April 21, 2020 (version 2)

Copyright

© 2020, Dupont et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,081
    Page views
  • 361
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Clotilde Cadart et al.
    Research Article

    The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such ‘additive noise’ could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Elizabeth J Lawrence et al.
    Research Article Updated

    Sjögren’s syndrome nuclear autoantigen-1 (SSNA1/NA14) is a microtubule-associated protein with important functions in cilia, dividing cells, and developing neurons. However, the direct effects of SSNA1 on microtubules are not known. We employed in vitro reconstitution with purified proteins and TIRF microscopy to investigate the activity of human SSNA1 on dynamic microtubule ends and lattices. Our results show that SSNA1 modulates all parameters of microtubule dynamic instability—slowing down the rates of growth, shrinkage, and catastrophe, and promoting rescue. We find that SSNA1 forms stretches along growing microtubule ends and binds cooperatively to the microtubule lattice. Furthermore, SSNA1 is enriched on microtubule damage sites, occurring both naturally, as well as induced by the microtubule severing enzyme spastin. Finally, SSNA1 binding protects microtubules against spastin’s severing activity. Taken together, our results demonstrate that SSNA1 is both a potent microtubule-stabilizing protein and a novel sensor of microtubule damage; activities that likely underlie SSNA1’s functions on microtubule structures in cells.