Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome

  1. Evan J Worden
  2. Xiangbin Zhang
  3. Cynthia Wolberger  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

Methylation of histone H3K4 is a hallmark of actively transcribed genes that depends on mono-ubiquitination of histone H2B (H2B-Ub). H3K4 methylation in yeast is catalyzed by Set1, the methyltransferase subunit of COMPASS. We report here the cryo-EM structure of a six-protein core COMPASS subcomplex, which can methylate H3K4 and be stimulated by H2B-Ub, bound to a ubiquitinated nucleosome. Our structure shows that COMPASS spans the face of the nucleosome, recognizing ubiquitin on one face of the nucleosome and methylating H3 on the opposing face. As compared to the structure of the isolated core complex, Set1 undergoes multiple structural rearrangements to cement interactions with the nucleosome and with ubiquitin. The critical Set1 RxxxRR motif adopts a helix that mediates bridging contacts between the nucleosome, ubiquitin and COMPASS. The structure provides a framework for understanding mechanisms of trans-histone cross-talk and the dynamic role of H2B ubiquitination in stimulating histone methylation.

Data availability

Coordinates have been deposited in the PDB under accession code 6VEN.Maps have been deposited in EMDB under accession codes EMD21157.

The following data sets were generated

Article and author information

Author details

  1. Evan J Worden

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Xiangbin Zhang

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Cynthia Wolberger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    cwolberg@jhmi.edu
    Competing interests
    Cynthia Wolberger, Senior editor, eLife; is a member of the scientific advisory board of ThermoFisher Scientific.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8578-2969

Funding

National Institute of General Medical Sciences (GM130393)

  • Cynthia Wolberger

Damon Runyon Cancer Research Foundation (DRG 2308-17)

  • Evan J Worden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: October 31, 2019
  2. Accepted: January 10, 2020
  3. Accepted Manuscript published: January 10, 2020 (version 1)
  4. Version of Record published: February 24, 2020 (version 2)

Copyright

© 2020, Worden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,042
    views
  • 658
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evan J Worden
  2. Xiangbin Zhang
  3. Cynthia Wolberger
(2020)
Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome
eLife 9:e53199.
https://doi.org/10.7554/eLife.53199

Share this article

https://doi.org/10.7554/eLife.53199

Further reading

    1. Chromosomes and Gene Expression
    Miin S Lin, Se-Young Jo ... Vineet Bafna
    Research Article

    Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Mathew Thayer, Michael B Heskett ... Phillip A Yates
    Research Article

    ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.