Morphology: Too hip for two sacral vertebrae

A complex pelvic morphology has been discovered in the fossils of one of the largest crocodylians.
  1. Michelle R Stocker  Is a corresponding author
  1. Virginia Tech, United States

The properties of vertebrae – the bones that make up the backbone – have a crucial influence on the way that mammals, birds, fishes and many other vertebrate species move. Some vertebrates have vertebrae that are rather charismatic in terms of size, shape or number. For example, all mammals possess seven vertebrae within their necks, whether they are a giraffe or a mouse, and the length of these vertebrae depends on the length of the neck.

Reptiles typically have two vertebrae in their sacrum, which is near the pelvis (Hoffstetter and Gasc, 1969). Having two sacral vertebrae is characteristic of the Archosauromorpha, a group that includes crocodylians (large, predatory, aquatic and semiaquatic reptiles) and their extinct close relatives (Nesbitt, 2011; Griffin et al., 2017). However, birds and their close relatives among non-avian theropods (dinosaurs with hollow bones and three toes) deviate from this trend of having two vertebrae in the sacrum. Many birds have at least 12 sacral vertebrae, and swans have 24 (Turner et al., 2012)!

Studies of growth in living species, like the chicken, show that the ordering of the body during development – and the number of vertebrae formed – is controlled by a group of genes called the Hox genes. These genes have recently been shown to control patterning in other archosauromorphs, including crocodylians (e.g. Böhmer et al., 2015).

But this is all in living species, what about fossils? It is known, for example, that some early theropod fossils (like those of Tyrannosaurus or Velociraptor) exhibit more than two sacral vertebrae (Turner et al., 2012). Exploring the vertebrae of fossils helps to fill in the gaps in our understanding of morphology, and helps explain why modern groups look the way they do and how extinct members of those groups organized their body plans.

Now, in eLife, Torsten Scheyer of the University of Zurich and co-workers in Switzerland, the United Kingdom, Italy, Spain and Venezuela report on a crocodylian fossil that has more than two sacral vertebrae (Scheyer et al., 2019). The extinct Purussaurus mirandai, one of the largest known crocodylians, is found fossilized in rocks in northern South America that are between 5 and 13 million years old, and is related to crocodylians alive today. This giant caiman is known for its very large skull, but Scheyer et al. have now described all the other bones known to be associated with the species. As part of that description, they examined the sacral vertebrae and found the first non-pathological case of a crocodylian with more than two vertebrae in their sacrum (Figure 1).

Fossilized sacral vertebrae of Purussaurus mirandai.

Scheyer et al. have examined the skeleton of the crocodylian P. mirandai. All other crocodylians examined to date only have two vertebrae in their sacrum, making P. mirandai the first reported case of a crocodylian with three sacral vertebrae. This is likely due to a change in the expression of the Hox genes in this species. Indicated as prz in the image, the prezygagophysis connects each vertebra with the anterior one in the spine.

How did the number of vertebrae increase? As the skeleton grows, three types of changes are possible: a vertebra could be added from the tail (i.e., the ‘caudal’ vertebrae), creating a caudosacral; a vertebra could be inserted between the original two; or a vertebra could be added from the front, creating a dorsosacral. Scheyer et al. show that P. mirandai has the two original sacral vertebrae as well as a dorsosacral, similar to some extinct crocodylian-like animals called phytosaurs (Griffin et al., 2017).

But why would a species add vertebrae? An expanded sacrum might give vertebrates increased stability. This is important when a species increases in size, or when it becomes bipedal (and has to be able to balance while standing on two legs). Scheyer et al. looked at other parts of the skeleton to answer why P. mirandai had an extra vertebra, examining the shoulder girdle. In these specimens, the shoulder girdle is oriented more vertically than in other crocodylians with just two sacral vertebrae. This, along with the expanded pelvis, is evidence for weight being supported by the limbs rather than the trunk, hinting at the species becoming more upright. Crocodylians also have massive, muscular tails, which add to the weight that has to be supported and also changes the center of mass (Molnar et al., 2014).

These newly examined specimens of P. mirandai show that crocodylians have the ability to expand the number of sacral vertebrae, suggesting a change in the pattern of Hox gene expression in this species. There is evidence that other non-dinosaurian archosauromorphs, such as phytosaurs, expanded their sacral vertebrae, too, despite having evolved separately (Griffin et al., 2017). However, a sacrum with more than two sacral vertebrae has evolved multiple times independently, especially in animals from the Triassic Period (~250–200 million years ago). The confirmation that crocodylians can have more than two sacral vertebrae rewrites what was thought of as possible for this group of animals, adding an interesting new layer of developmental and morphological flexibility.

References

  1. Book
    1. Hoffstetter R
    2. Gasc J-P
    (1969)
    Vertebrae and ribs of modern reptiles
    In: Gans C, Bellairs A. D. A, Parsons T. S, editors. Biology of the Reptilia. Volume 1. Morphology A. London: Academic Press. pp. 201–310.

Article and author information

Author details

  1. Michelle R Stocker

    Michelle R Stocker is in the Department of Geosciences, Virginia Tech, Blacksburg, United States

    For correspondence
    stockerm@vt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6473-8691

Publication history

  1. Version of Record published: December 19, 2019 (version 1)

Copyright

© 2019, Stocker

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 971
    Page views
  • 40
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle R Stocker
(2019)
Morphology: Too hip for two sacral vertebrae
eLife 8:e53399.
https://doi.org/10.7554/eLife.53399
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Roee Ben Nissan, Eliya Milshtein ... Ron Milo
    Research Article

    Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme’s activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle’s electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Thomas A Sasani, Aaron R Quinlan, Kelley Harris
    Research Article

    Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations – the frequencies of C>T, A>G, etc. – will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.