Morphology: Too hip for two sacral vertebrae

A complex pelvic morphology has been discovered in the fossils of one of the largest crocodylians.
  1. Michelle R Stocker  Is a corresponding author
  1. Virginia Tech, United States

The properties of vertebrae – the bones that make up the backbone – have a crucial influence on the way that mammals, birds, fishes and many other vertebrate species move. Some vertebrates have vertebrae that are rather charismatic in terms of size, shape or number. For example, all mammals possess seven vertebrae within their necks, whether they are a giraffe or a mouse, and the length of these vertebrae depends on the length of the neck.

Reptiles typically have two vertebrae in their sacrum, which is near the pelvis (Hoffstetter and Gasc, 1969). Having two sacral vertebrae is characteristic of the Archosauromorpha, a group that includes crocodylians (large, predatory, aquatic and semiaquatic reptiles) and their extinct close relatives (Nesbitt, 2011; Griffin et al., 2017). However, birds and their close relatives among non-avian theropods (dinosaurs with hollow bones and three toes) deviate from this trend of having two vertebrae in the sacrum. Many birds have at least 12 sacral vertebrae, and swans have 24 (Turner et al., 2012)!

Studies of growth in living species, like the chicken, show that the ordering of the body during development – and the number of vertebrae formed – is controlled by a group of genes called the Hox genes. These genes have recently been shown to control patterning in other archosauromorphs, including crocodylians (e.g. Böhmer et al., 2015).

But this is all in living species, what about fossils? It is known, for example, that some early theropod fossils (like those of Tyrannosaurus or Velociraptor) exhibit more than two sacral vertebrae (Turner et al., 2012). Exploring the vertebrae of fossils helps to fill in the gaps in our understanding of morphology, and helps explain why modern groups look the way they do and how extinct members of those groups organized their body plans.

Now, in eLife, Torsten Scheyer of the University of Zurich and co-workers in Switzerland, the United Kingdom, Italy, Spain and Venezuela report on a crocodylian fossil that has more than two sacral vertebrae (Scheyer et al., 2019). The extinct Purussaurus mirandai, one of the largest known crocodylians, is found fossilized in rocks in northern South America that are between 5 and 13 million years old, and is related to crocodylians alive today. This giant caiman is known for its very large skull, but Scheyer et al. have now described all the other bones known to be associated with the species. As part of that description, they examined the sacral vertebrae and found the first non-pathological case of a crocodylian with more than two vertebrae in their sacrum (Figure 1).

Fossilized sacral vertebrae of Purussaurus mirandai.

Scheyer et al. have examined the skeleton of the crocodylian P. mirandai. All other crocodylians examined to date only have two vertebrae in their sacrum, making P. mirandai the first reported case of a crocodylian with three sacral vertebrae. This is likely due to a change in the expression of the Hox genes in this species. Indicated as prz in the image, the prezygagophysis connects each vertebra with the anterior one in the spine.

How did the number of vertebrae increase? As the skeleton grows, three types of changes are possible: a vertebra could be added from the tail (i.e., the ‘caudal’ vertebrae), creating a caudosacral; a vertebra could be inserted between the original two; or a vertebra could be added from the front, creating a dorsosacral. Scheyer et al. show that P. mirandai has the two original sacral vertebrae as well as a dorsosacral, similar to some extinct crocodylian-like animals called phytosaurs (Griffin et al., 2017).

But why would a species add vertebrae? An expanded sacrum might give vertebrates increased stability. This is important when a species increases in size, or when it becomes bipedal (and has to be able to balance while standing on two legs). Scheyer et al. looked at other parts of the skeleton to answer why P. mirandai had an extra vertebra, examining the shoulder girdle. In these specimens, the shoulder girdle is oriented more vertically than in other crocodylians with just two sacral vertebrae. This, along with the expanded pelvis, is evidence for weight being supported by the limbs rather than the trunk, hinting at the species becoming more upright. Crocodylians also have massive, muscular tails, which add to the weight that has to be supported and also changes the center of mass (Molnar et al., 2014).

These newly examined specimens of P. mirandai show that crocodylians have the ability to expand the number of sacral vertebrae, suggesting a change in the pattern of Hox gene expression in this species. There is evidence that other non-dinosaurian archosauromorphs, such as phytosaurs, expanded their sacral vertebrae, too, despite having evolved separately (Griffin et al., 2017). However, a sacrum with more than two sacral vertebrae has evolved multiple times independently, especially in animals from the Triassic Period (~250–200 million years ago). The confirmation that crocodylians can have more than two sacral vertebrae rewrites what was thought of as possible for this group of animals, adding an interesting new layer of developmental and morphological flexibility.

References

  1. Book
    1. Hoffstetter R
    2. Gasc J-P
    (1969)
    Vertebrae and ribs of modern reptiles
    In: Gans C, Bellairs A. D. A, Parsons T. S, editors. Biology of the Reptilia. Volume 1. Morphology A. London: Academic Press. pp. 201–310.

Article and author information

Author details

  1. Michelle R Stocker

    Michelle R Stocker is in the Department of Geosciences, Virginia Tech, Blacksburg, United States

    For correspondence
    stockerm@vt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6473-8691

Publication history

  1. Version of Record published: December 19, 2019 (version 1)

Copyright

© 2019, Stocker

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 819
    Page views
  • 40
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle R Stocker
(2019)
Morphology: Too hip for two sacral vertebrae
eLife 8:e53399.
https://doi.org/10.7554/eLife.53399
  1. Further reading

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Juan Manuel Vazquez, Maria T Pena ... Vincent J Lynch
    Research Advance

    The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: 1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; 2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; 3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and 4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer resistant group of mammals.

    1. Ecology
    2. Evolutionary Biology
    Zinan Wang, Joseph P Receveur ... Henry Chung
    Research Article

    Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.