1. Neuroscience
Download icon

Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models

  1. Menoua Keshishian
  2. Hassan Akbari
  3. Bahar Khalighinejad
  4. Jose L Herrero
  5. Ashesh D Mehta
  6. Nima Mesgarani  Is a corresponding author
  1. Columbia University, United States
  2. Feinstein Institute for Medical Research, United States
  3. Hofstra Northwell School of Medicine, United States
Research Article
  • Cited 0
  • Views 261
  • Annotations
Cite this article as: eLife 2020;9:e53445 doi: 10.7554/eLife.53445

Abstract

Our understanding of nonlinear stimulus transformations by neural circuits is hindered by the lack of comprehensive yet interpretable computational modeling frameworks. Here, we propose a data-driven approach based on deep neural networks to directly model arbitrarily nonlinear stimulus-response mappings. Reformulating the exact function of a trained neural network as a collection of stimulus-dependent linear functions enables a locally linear receptive field interpretation of the neural network. Predicting the neural responses recorded invasively from the auditory cortex of neurosurgical patients as they listened to speech, this approach significantly improves the prediction accuracy of auditory cortical responses, particularly in nonprimary areas. Moreover, interpreting the functions learned by neural networks uncovered three distinct types of nonlinear transformations of speech that varied considerably from primary to nonprimary auditory regions. The ability of this framework to capture arbitrary stimulus-response mappings while maintaining model interpretability leads to a better understanding of cortical processing of sensory signals.

Article and author information

Author details

  1. Menoua Keshishian

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0368-288X
  2. Hassan Akbari

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bahar Khalighinejad

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jose L Herrero

    Feinstein Institute for Medical Research, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashesh D Mehta

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7293-1101
  6. Nima Mesgarani

    Department of Electrical Engineering, Columbia University, New York, United States
    For correspondence
    nima@ee.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2987-759X

Funding

National Institutes of Health (NIDCD-DC014279)

  • Menoua Keshishian
  • Hassan Akbari
  • Bahar Khalighinejad

National Institute of Mental Health

  • Jose L Herrero
  • Ashesh D Mehta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All research protocols were approved and monitored by the institutional review board at the Feinstein Institute for Medical Research (IRB-AAAD5482), and informed written consent to participate in research studies was obtained from each patient before electrode implantation.

Reviewing Editor

  1. Thomas Serre, Brown University, United States

Publication history

  1. Received: November 8, 2019
  2. Accepted: June 21, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)

Copyright

© 2020, Keshishian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 261
    Page views
  • 60
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Joanne C Gordon et al.
    Research Article Updated
    1. Neuroscience
    Julia Erb et al.
    Research Article