Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner

  1. Stefan Golfier
  2. Thomas Quail
  3. Hiroshi Kimura
  4. Jan Brugués  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Tokyo Institute of Technology, Japan

Abstract

Loop extrusion by structural maintenance of chromosomes complexes (SMCs) has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Stefan Golfier

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Quail

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroshi Kimura

    Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0854-083X
  4. Jan Brugués

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    brugues@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6731-4130

Funding

Human Frontier Science Program (CDA00074/2014)

  • Jan Brugués

European Molecular Biology Organization (ALTF 1456-2015)

  • Thomas Quail

ELBE fellowship

  • Stefan Golfier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All animals were handled according to the directive 2010/63/EU on the protection of animals used for scientific purposes, and the german animal welfare law under the license document number DD24-5131/367/9 from the Landesdirektion Sachsen (Dresden) - Section 24D.

Reviewing Editor

  1. Job Dekker, University of Massachusetts Medical School, United States

Publication history

  1. Received: November 22, 2019
  2. Accepted: May 11, 2020
  3. Accepted Manuscript published: May 12, 2020 (version 1)
  4. Version of Record published: June 25, 2020 (version 2)

Copyright

© 2020, Golfier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,952
    Page views
  • 956
    Downloads
  • 86
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Golfier
  2. Thomas Quail
  3. Hiroshi Kimura
  4. Jan Brugués
(2020)
Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner
eLife 9:e53885.
https://doi.org/10.7554/eLife.53885

Further reading

    1. Cell Biology
    Yucen Hu, Jingxiu Xu ... Weirui Ma
    Tools and Resources Updated

    Imaging endogenous mRNAs in live animals is technically challenging. Here, we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans.

    1. Cancer Biology
    2. Cell Biology
    Elena Tomas Bort, Megan Daisy Joseph ... Richard Philip Grose
    Research Article

    Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response and immune function. Analysing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signalling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.