Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner

  1. Stefan Golfier
  2. Thomas Quail
  3. Hiroshi Kimura
  4. Jan Brugués  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Tokyo Institute of Technology, Japan

Abstract

Loop extrusion by structural maintenance of chromosomes complexes (SMCs) has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Stefan Golfier

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Quail

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroshi Kimura

    Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0854-083X
  4. Jan Brugués

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    brugues@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6731-4130

Funding

Human Frontier Science Program (CDA00074/2014)

  • Jan Brugués

European Molecular Biology Organization (ALTF 1456-2015)

  • Thomas Quail

ELBE fellowship

  • Stefan Golfier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All animals were handled according to the directive 2010/63/EU on the protection of animals used for scientific purposes, and the german animal welfare law under the license document number DD24-5131/367/9 from the Landesdirektion Sachsen (Dresden) - Section 24D.

Copyright

© 2020, Golfier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,628
    views
  • 1,109
    downloads
  • 192
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Golfier
  2. Thomas Quail
  3. Hiroshi Kimura
  4. Jan Brugués
(2020)
Cohesin and condensin extrude DNA loops in a cell-cycle dependent manner
eLife 9:e53885.
https://doi.org/10.7554/eLife.53885

Share this article

https://doi.org/10.7554/eLife.53885

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.